Copyright (C) 2021-2022 Jørgen S. Dokken and Garth N. Wells
This file is part of DOLFINx (https://www.fenicsproject.org)
SPDX-License-Identifier: LGPL-3.0-or-later
Visualization with PyVista
PyVista can be used with DOLFINx for interactive visualisation.
To start, the required modules are imported and some PyVista parameters set.
from mpi4py import MPI
import numpy as np
import dolfinx.plot as plot
from dolfinx.fem import Function, functionspace
from dolfinx.mesh import CellType, compute_midpoints, create_unit_cube, create_unit_square, meshtags
try:
import pyvista
except ModuleNotFoundError:
print("pyvista is required for this demo")
exit(0)
# If environment variable PYVISTA_OFF_SCREEN is set to true save a png
# otherwise create interactive plot
if pyvista.OFF_SCREEN:
pyvista.start_xvfb(wait=0.1)
# Set some global options for all plots
transparent = False
figsize = 800
Plotting a finite element Function using warp by scalar
def plot_scalar():
# We start by creating a unit square mesh and interpolating a
# function into a degree 1 Lagrange space
msh = create_unit_square(MPI.COMM_WORLD, 12, 12, cell_type=CellType.quadrilateral)
V = functionspace(msh, ("Lagrange", 1))
u = Function(V, dtype=np.float64)
u.interpolate(lambda x: np.sin(np.pi * x[0]) * np.sin(2 * x[1] * np.pi))
# To visualize the function u, we create a VTK-compatible grid to
# values of u to
cells, types, x = plot.vtk_mesh(V)
grid = pyvista.UnstructuredGrid(cells, types, x)
grid.point_data["u"] = u.x.array
# The function "u" is set as the active scalar for the mesh, and
# warp in z-direction is set
grid.set_active_scalars("u")
warped = grid.warp_by_scalar()
# A plotting window is created with two sub-plots, one of the scalar
# values and the other of the mesh is warped by the scalar values in
# z-direction
subplotter = pyvista.Plotter(shape=(1, 2))
subplotter.subplot(0, 0)
subplotter.add_text("Scalar contour field", font_size=14, color="black", position="upper_edge")
subplotter.add_mesh(grid, show_edges=True, show_scalar_bar=True)
subplotter.view_xy()
subplotter.subplot(0, 1)
subplotter.add_text("Warped function", position="upper_edge", font_size=14, color="black")
sargs = dict(
height=0.8,
width=0.1,
vertical=True,
position_x=0.05,
position_y=0.05,
fmt="%1.2e",
title_font_size=40,
color="black",
label_font_size=25,
)
subplotter.set_position([-3, 2.6, 0.3])
subplotter.set_focus([3, -1, -0.15])
subplotter.set_viewup([0, 0, 1])
subplotter.add_mesh(warped, show_edges=True, scalar_bar_args=sargs)
if pyvista.OFF_SCREEN:
subplotter.screenshot(
"2D_function_warp.png",
transparent_background=transparent,
window_size=[figsize, figsize],
)
else:
subplotter.show()
Higher-order Functions
Higher-order finite element function can also be plotted.
def plot_higher_order():
# Create a mesh
msh = create_unit_square(MPI.COMM_WORLD, 12, 12, cell_type=CellType.quadrilateral)
# Define a geometric indicator function
def in_circle(x):
return np.array((x.T[0] - 0.5) ** 2 + (x.T[1] - 0.5) ** 2 < 0.2**2, dtype=np.int32)
# Create mesh tags for all cells. If midpoint is inside the circle,
# it gets value 1, otherwise 0.
num_cells = msh.topology.index_map(msh.topology.dim).size_local
midpoints = compute_midpoints(msh, msh.topology.dim, np.arange(num_cells, dtype=np.int32))
cell_tags = meshtags(msh, msh.topology.dim, np.arange(num_cells), in_circle(midpoints))
# We start by interpolating a discontinuous function (discontinuous
# between cells with different mesh tag values) into a degree 2
# discontinuous Lagrange space.
V = functionspace(msh, ("Discontinuous Lagrange", 2))
u = Function(V, dtype=msh.geometry.x.dtype)
u.interpolate(lambda x: x[0], cell_tags.find(0))
u.interpolate(lambda x: x[1] + 1, cell_tags.find(1))
u.x.scatter_forward()
# Create a topology that has a 1-1 correspondence with the
# degrees-of-freedom in the function space V
cells, types, x = plot.vtk_mesh(V)
# Create a pyvista mesh and attach the values of u
grid = pyvista.UnstructuredGrid(cells, types, x)
grid.point_data["u"] = u.x.array
grid.set_active_scalars("u")
# We would also like to visualize the underlying mesh and obtain
# that as we have done previously
num_cells = msh.topology.index_map(msh.topology.dim).size_local
cell_entities = np.arange(num_cells, dtype=np.int32)
cells, types, x = plot.vtk_mesh(msh, entities=cell_entities)
org_grid = pyvista.UnstructuredGrid(cells, types, x)
# We visualize the data
plotter = pyvista.Plotter()
plotter.add_text(
"Second-order (P2) discontinuous elements",
position="upper_edge",
font_size=14,
color="black",
)
sargs = dict(height=0.1, width=0.8, vertical=False, position_x=0.1, position_y=0, color="black")
plotter.add_mesh(grid, show_edges=False, scalar_bar_args=sargs, line_width=0)
plotter.add_mesh(org_grid, color="white", style="wireframe", line_width=5)
plotter.add_mesh(
grid.copy(), style="points", point_size=15, render_points_as_spheres=True, line_width=0
)
plotter.view_xy()
if pyvista.OFF_SCREEN:
plotter.screenshot(
f"DG_{MPI.COMM_WORLD.rank}.png",
transparent_background=transparent,
window_size=[figsize, figsize],
)
else:
plotter.show()
Vector-element functions
In this section we will consider how to plot vector-element functions, e.g. Raviart-Thomas or Nédélec elements.
def plot_nedelec():
msh = create_unit_cube(MPI.COMM_WORLD, 4, 3, 5, cell_type=CellType.tetrahedron)
# We create a pyvista plotter
plotter = pyvista.Plotter()
plotter.add_text(
"Mesh and corresponding vectors", position="upper_edge", font_size=14, color="black"
)
# Next, we create a pyvista.UnstructuredGrid based on the mesh
pyvista_cells, cell_types, x = plot.vtk_mesh(msh)
grid = pyvista.UnstructuredGrid(pyvista_cells, cell_types, x)
# Add this grid (as a wireframe) to the plotter
plotter.add_mesh(grid, style="wireframe", line_width=2, color="black")
# Create a function space consisting of first order Nédélec (first kind)
# elements and interpolate a vector-valued expression
V = functionspace(msh, ("N1curl", 2))
u = Function(V, dtype=np.float64)
u.interpolate(lambda x: (x[2] ** 2, np.zeros(x.shape[1]), -x[0] * x[2]))
# Exact visualisation of the Nédélec spaces requires a Lagrange or
# discontinuous Lagrange finite element functions. Therefore, we
# interpolate the Nédélec function into a first-order discontinuous
# Lagrange space.
gdim = msh.geometry.dim
V0 = functionspace(msh, ("Discontinuous Lagrange", 2, (gdim,)))
u0 = Function(V0, dtype=np.float64)
u0.interpolate(u)
# Create a second grid, whose geometry and topology is based on the
# output function space
cells, cell_types, x = plot.vtk_mesh(V0)
grid = pyvista.UnstructuredGrid(cells, cell_types, x)
# Create point cloud of vertices, and add the vertex values to the cloud
grid.point_data["u"] = u0.x.array.reshape(x.shape[0], V0.dofmap.index_map_bs)
glyphs = grid.glyph(orient="u", factor=0.1)
# We add in the glyphs corresponding to the plotter
plotter.add_mesh(glyphs)
# Save as png if we are using a container with no rendering
if pyvista.OFF_SCREEN:
plotter.screenshot(
"3D_wireframe_with_vectors.png",
transparent_background=transparent,
window_size=[figsize, figsize],
)
else:
plotter.show()
Plotting streamlines
In this section we illustrate how to visualize streamlines in 3D
def plot_streamlines():
msh = create_unit_cube(MPI.COMM_WORLD, 4, 4, 4, CellType.hexahedron)
gdim = msh.geometry.dim
V = functionspace(msh, ("Discontinuous Lagrange", 2, (gdim,)))
u = Function(V, dtype=np.float64)
u.interpolate(lambda x: np.vstack((-(x[1] - 0.5), x[0] - 0.5, np.zeros(x.shape[1]))))
cells, types, x = plot.vtk_mesh(V)
num_dofs = x.shape[0]
values = np.zeros((num_dofs, 3), dtype=np.float64)
values[:, : msh.geometry.dim] = u.x.array.reshape(num_dofs, V.dofmap.index_map_bs)
# Create a point cloud of glyphs
grid = pyvista.UnstructuredGrid(cells, types, x)
grid["vectors"] = values
grid.set_active_vectors("vectors")
glyphs = grid.glyph(orient="vectors", factor=0.1)
streamlines = grid.streamlines(
vectors="vectors", return_source=False, source_radius=1, n_points=150
)
# Create Create plotter
plotter = pyvista.Plotter()
plotter.add_text("Streamlines.", position="upper_edge", font_size=20, color="black")
plotter.add_mesh(grid, style="wireframe")
plotter.add_mesh(glyphs)
plotter.add_mesh(streamlines.tube(radius=0.001))
plotter.view_xy()
if pyvista.OFF_SCREEN:
plotter.screenshot(
f"streamlines_{MPI.COMM_WORLD.rank}.png",
transparent_background=transparent,
window_size=[figsize, figsize],
)
else:
plotter.show()
plot_scalar()
plot_meshtags()
plot_higher_order()
plot_nedelec()
plot_streamlines()