Electromagnetic modal analysis for a waveguide
Copyright (C) 2022 Michele Castriotta, Igor Baratta, Jørgen S. Dokken
This demo is implemented in two files, one for defining and solving the eigenvalue problem for a half-loaded electromagnetic waveguide with perfect electric conducting walls, and one for verifying if the numerical eigenvalues are consistent with the analytical modes of the problem.
The demo shows how to:
Setup an eigenvalue problem for Maxwell’s equations
Use SLEPc for solving eigenvalue problems
Equations and problem definition
In this demo, we are going to show how to solve the eigenvalue problem associated with a half-loaded rectangular waveguide with perfect electric conducting walls.
First of all, let’s import the modules we need for solving the problem:
from mpi4py import MPI
import numpy as np
try:
from petsc4py import PETSc
import dolfinx
if not dolfinx.has_petsc:
print("This demo requires DOLFINx to be compiled with PETSc enabled.")
exit(0)
if PETSc.IntType == np.int64 and MPI.COMM_WORLD.size > 1:
print("This solver fails with PETSc and 64-bit integers becaude of memory errors in MUMPS.")
# Note: when PETSc.IntType == np.int32, superlu_dist is used
# rather than MUMPS and does not trigger memory failures.
exit(0)
real_type = PETSc.RealType
scalar_type = PETSc.ScalarType
except ModuleNotFoundError:
print("This demo requires petsc4py.")
exit(0)
import ufl
from basix.ufl import element, mixed_element
from dolfinx import fem, io, plot
from dolfinx.fem.petsc import assemble_matrix
from dolfinx.mesh import CellType, create_rectangle, exterior_facet_indices, locate_entities
try:
import pyvista
have_pyvista = True
except ModuleNotFoundError:
print("pyvista and pyvistaqt are required to visualise the solution")
have_pyvista = False
try:
from slepc4py import SLEPc
except ModuleNotFoundError:
print("slepc4py is required for this demo")
exit(0)
Analytical solutions for the half-loaded waveguide
The analytical solutions for the half-loaded waveguide with perfect electric conducting walls are described in Harrington’s Time-harmonic electromagnetic fields. We will skip the full derivation, and we just mention that the problem can be decoupled into \(\mathrm{TE}_x\) and \(\mathrm{TM}_x\) modes, and the possible \(k_z\) can be found by solving a set of transcendental equations, which is shown here below:
with:
\(\varepsilon_d\rightarrow\) dielectric permittivity
\(\varepsilon_v\rightarrow\) vacuum permittivity
\(w\rightarrow\) total width of the waveguide
\(h\rightarrow\) total height of the waveguide
\(d\rightarrow\) height of the dielectric fraction
\(k_0\rightarrow\) vacuum wavevector
\(k_{xd}\rightarrow\) \(x\) component of the wavevector in the dielectric
\(k_{xv}\rightarrow\) \(x\) component of the wavevector in the vacuum
\(\frac{n \pi}{w} = k_y\rightarrow\) \(y\) component of the wavevector for different \(n\) harmonic numbers (we assume \(n=1\) for the sake of simplicity)
Let’s define the set of equations with the \(\tan\) and \(\cot\) function:
def TMx_condition(
kx_d: complex, kx_v: complex, eps_d: complex, eps_v: complex, d: float, h: float
) -> float:
return kx_d / eps_d * np.tan(kx_d * d) + kx_v / eps_v * np.tan(kx_v * (h - d))
def TEx_condition(kx_d: complex, kx_v: complex, d: float, h: float) -> float:
return kx_d / np.tan(kx_d * d) + kx_v / np.tan(kx_v * (h - d))
Then, we can define the verify_mode
function, to check whether a
certain \(k_z\) satisfy the equations (below a certain threshold). In
other words, we provide a certain \(k_z\), together with the geometrical
and optical parameters of the waveguide, and verify_mode()
checks
whether the last equations for the \(\mathrm{TE}_x\) or \(\mathrm{TM}_x\)
modes are close to \(0\).
def verify_mode(
kz: complex,
w: float,
h: float,
d: float,
lmbd0: float,
eps_d: complex,
eps_v: complex,
threshold: float,
) -> np.bool_:
k0 = 2 * np.pi / lmbd0
ky = np.pi / w # we assume n = 1
kx_d_target = np.sqrt(k0**2 * eps_d - ky**2 + -(kz**2) + 0j)
alpha = kx_d_target**2
beta = alpha - k0**2 * (eps_d - eps_v)
kx_v = np.sqrt(beta)
kx_d = np.sqrt(alpha)
f_tm = TMx_condition(kx_d, kx_v, eps_d, eps_v, d, h)
f_te = TEx_condition(kx_d, kx_v, d, h)
return np.isclose(f_tm, 0, atol=threshold) or np.isclose(f_te, 0, atol=threshold)
We now define the domain. It is a rectangular domain with width \(w\) and height \(h = 0.45w\), with the dielectric medium filling the lower-half of the domain, with a height of \(d=0.5h\).
w = 1
h = 0.45 * w
d = 0.5 * h
nx = 300
ny = int(0.4 * nx)
msh = create_rectangle(
MPI.COMM_WORLD, np.array([[0, 0], [w, h]]), np.array([nx, ny]), CellType.quadrilateral
)
msh.topology.create_connectivity(msh.topology.dim - 1, msh.topology.dim)
Now we can define the dielectric permittivity \(\varepsilon_r\) over the domain as \(\varepsilon_r = \varepsilon_v = 1\) in the vacuum, and as \(\varepsilon_r = \varepsilon_d = 2.45\) in the dielectric:
eps_v = 1
eps_d = 2.45
def Omega_d(x):
return x[1] <= d
def Omega_v(x):
return x[1] >= d
D = fem.functionspace(msh, ("DQ", 0))
eps = fem.Function(D)
cells_v = locate_entities(msh, msh.topology.dim, Omega_v)
cells_d = locate_entities(msh, msh.topology.dim, Omega_d)
eps.x.array[cells_d] = np.full_like(cells_d, eps_d, dtype=scalar_type)
eps.x.array[cells_v] = np.full_like(cells_v, eps_v, dtype=scalar_type)
In order to find the weak form of our problem, the starting point are Maxwell’s equation and the perfect electric conductor condition on the waveguide wall:
with \(k_0\) and \(\lambda_0 = 2\pi/k_0\) being the wavevector and the wavelength, which we consider fixed at \(\lambda = h/0.2\). If we focus on non-magnetic material only, we can also use \(\mu_r=1\).
Now we can assume a known dependance on \(z\):
where \(\mathbf{E}_t\) is the component of the electric field transverse to the waveguide axis, and \(E_z\) is the component of the electric field parallel to the waveguide axis, and \(k_z\) represents our complex propagation constant.
In order to pose the problem as an eigenvalue problem, we need to make the following substitution:
The final weak form can be written as:
Or, in a more compact form, as:
A problem of this kind is known as a generalized eigenvalue problem, where our eigenvalues are all the possible \( -k_z^2\). For further details about this problem, check Jin’s The Finite Element Method in Electromagnetics, third edition.
To write the weak form, we need to specify our function space. For
\(\mathbf{e}_t\), we can use RTCE elements (the equivalent of Nedelec
elements on quadrilateral cells), while for \(e_z\) field we can use
Lagrange elements. This hybrid formulation is implemented with
mixed_element
:
degree = 1
RTCE = element("RTCE", msh.basix_cell(), degree, dtype=real_type)
Q = element("Lagrange", msh.basix_cell(), degree, dtype=real_type)
V = fem.functionspace(msh, mixed_element([RTCE, Q]))
Now we can define our weak form:
lmbd0 = h / 0.2
k0 = 2 * np.pi / lmbd0
et, ez = ufl.TrialFunctions(V)
vt, vz = ufl.TestFunctions(V)
a_tt = (ufl.inner(ufl.curl(et), ufl.curl(vt)) - (k0**2) * eps * ufl.inner(et, vt)) * ufl.dx
b_tt = ufl.inner(et, vt) * ufl.dx
b_tz = ufl.inner(et, ufl.grad(vz)) * ufl.dx
b_zt = ufl.inner(ufl.grad(ez), vt) * ufl.dx
b_zz = (ufl.inner(ufl.grad(ez), ufl.grad(vz)) - (k0**2) * eps * ufl.inner(ez, vz)) * ufl.dx
a = fem.form(a_tt)
b = fem.form(b_tt + b_tz + b_zt + b_zz)
Let’s add the perfect electric conductor conditions on the waveguide wall:
bc_facets = exterior_facet_indices(msh.topology)
bc_dofs = fem.locate_dofs_topological(V, msh.topology.dim - 1, bc_facets)
u_bc = fem.Function(V)
with u_bc.x.petsc_vec.localForm() as loc:
loc.set(0)
bc = fem.dirichletbc(u_bc, bc_dofs)
Solve the problem in SLEPc
Now we can solve the problem with SLEPc. First of all, we need to assemble our \(A\) and \(B\) matrices with PETSc in this way:
A = assemble_matrix(a, bcs=[bc])
A.assemble()
B = assemble_matrix(b, bcs=[bc])
B.assemble()
Now, we need to create the eigenvalue problem in SLEPc. Our problem is
a linear eigenvalue problem, that in SLEPc is solved with the EPS
module. We can initialize this solver in the following way:
eps = SLEPc.EPS().create(msh.comm)
We can pass to EPS
our matrices by using the setOperators
routine:
eps.setOperators(A, B)
If the matrices in the problem have known properties (e.g.
hermiticity) we can use this information in SLEPc to accelerate the
calculation with the setProblemType
function. For this problem,
there is no property that can be exploited, and therefore we define it
as a generalized non-Hermitian eigenvalue problem with the
SLEPc.EPS.ProblemType.GNHEP
object:
eps.setProblemType(SLEPc.EPS.ProblemType.GNHEP)
Next, we need to specify a tolerance for the iterative solver, so that it knows when to stop:
tol = 1e-9
eps.setTolerances(tol=tol)
Now we need to set the eigensolver for our problem. SLEPc offers
different built-in algorithms, and also wrappers to external
libraries. Some of these can only solve Hermitian problems and/or
problems with eigenvalues in a certain portion of the spectrum.
However, the choice of the particular method to choose to solve a
problem is a technical discussion that is out of the scope of this
demo, and that is more comprehensively discussed in the SLEPc
documentation. For our
problem, we will use the Krylov-Schur method, which we can set by
calling the setType
function:
eps.setType(SLEPc.EPS.Type.KRYLOVSCHUR)
In order to accelerate the calculation of our solutions, we can also
use a so-called spectral transformation, a technique which maps the
original eigenvalues into another position of the spectrum without
affecting the eigenvectors. In our case, we can use the
shift-and-invert transformation with the SLEPc.ST.Type.SINVERT
object:
# Get ST context from eps
st = eps.getST()
# Set shift-and-invert transformation
st.setType(SLEPc.ST.Type.SINVERT)
The spectral transformation needs a target value for the eigenvalues
we are looking for. Since the eigenvalues for our problem can be
complex numbers, we need to specify whether we are searching for
specific values in the real part, in the imaginary part, or in the
magnitude. In our case, we are interested in propagating modes, and
therefore in real \(k_z\). For this reason, we can specify with the
setWhichEigenpairs
function that our target value will refer to the
real part of the eigenvalue, with the SLEPc.EPS.Which.TARGET_REAL
object:
eps.setWhichEigenpairs(SLEPc.EPS.Which.TARGET_REAL)
For specifying the target value, we can use the setTarget
function.
Even though we cannot know a good target value a priori, we can guess
that \(k_z\) will be quite close to \(k_0\) in value, for instance \(k_z =
0.5k_0^2\). Therefore, we can set a target value of \(-(0.5k_0^2)\):
eps.setTarget(-((0.5 * k0) ** 2))
Then, we need to define the number of eigenvalues we want to
calculate. We can do this with the setDimensions
function, where we
specify that we are looking for just one eigenvalue:
eps.setDimensions(nev=1)
We can finally solve the problem with the solve
function. To gain a
deeper insight over the simulation, we also print an output message
from SLEPc by calling the view
and errorView
function:
eps.solve()
eps.view()
eps.errorView()
Now we can get the eigenvalues and eigenvectors calculated by SLEPc
with the following code. We also verify if the numerical \(k_z\) are
consistent with the analytical equations of the half-loaded waveguide
modes, with the verify_mode()
function defined in
analytical_modes.py
:
# Save the kz
vals = [(i, np.sqrt(-eps.getEigenvalue(i))) for i in range(eps.getConverged())]
# Sort kz by real part
vals.sort(key=lambda x: x[1].real)
eh = fem.Function(V)
kz_list = []
for i, kz in vals:
# Save eigenvector in eh
eps.getEigenpair(i, eh.x.petsc_vec)
# Compute error for i-th eigenvalue
error = eps.computeError(i, SLEPc.EPS.ErrorType.RELATIVE)
# Verify, save and visualize solution
if error < tol and np.isclose(kz.imag, 0, atol=tol):
kz_list.append(kz)
# Verify if kz is consistent with the analytical equations
assert verify_mode(kz, w, h, d, lmbd0, eps_d, eps_v, threshold=1e-4)
print(f"eigenvalue: {-kz**2}")
print(f"kz: {kz}")
print(f"kz/k0: {kz / k0}")
eh.x.scatter_forward()
eth, ezh = eh.split()
eth = eh.sub(0).collapse()
ez = eh.sub(1).collapse()
# Transform eth, ezh into Et and Ez
eth.x.array[:] = eth.x.array[:] / kz
ezh.x.array[:] = ezh.x.array[:] * 1j
gdim = msh.geometry.dim
V_dg = fem.functionspace(msh, ("DQ", degree, (gdim,)))
Et_dg = fem.Function(V_dg)
Et_dg.interpolate(eth)
# Save solutions
with io.VTXWriter(msh.comm, f"sols/Et_{i}.bp", Et_dg) as f:
f.write(0.0)
with io.VTXWriter(msh.comm, f"sols/Ez_{i}.bp", ezh) as f:
f.write(0.0)
# Visualize solutions with Pyvista
if have_pyvista:
V_cells, V_types, V_x = plot.vtk_mesh(V_dg)
V_grid = pyvista.UnstructuredGrid(V_cells, V_types, V_x)
Et_values = np.zeros((V_x.shape[0], 3), dtype=np.float64)
Et_values[:, : msh.topology.dim] = Et_dg.x.array.reshape(
V_x.shape[0], msh.topology.dim
).real
V_grid.point_data["u"] = Et_values
plotter = pyvista.Plotter()
plotter.add_mesh(V_grid.copy(), show_edges=False)
plotter.view_xy()
plotter.link_views()
if not pyvista.OFF_SCREEN:
plotter.show()
else:
pyvista.start_xvfb()
plotter.screenshot("Et.png", window_size=[400, 400])
if have_pyvista:
V_lagr, lagr_dofs = V.sub(1).collapse()
V_cells, V_types, V_x = plot.vtk_mesh(V_lagr)
V_grid = pyvista.UnstructuredGrid(V_cells, V_types, V_x)
V_grid.point_data["u"] = ezh.x.array.real[lagr_dofs]
plotter = pyvista.Plotter()
plotter.add_mesh(V_grid.copy(), show_edges=False)
plotter.view_xy()
plotter.link_views()
if not pyvista.OFF_SCREEN:
plotter.show()
else:
pyvista.start_xvfb()
plotter.screenshot("Ez.png", window_size=[400, 400])