Divergence conforming discontinuous Galerkin method for the Navier–Stokes equations
This demo (demo_navier-stokes.py
) illustrates how to
implement a divergence conforming discontinuous Galerkin method for
the Navier-Stokes equations in FEniCSx. The method conserves mass
exactly and uses upwinding. The formulation is based on a combination
of “A fully divergence-free finite element method for
magnetohydrodynamic equations” by Hiptmair et al., “A Note on
Discontinuous Galerkin Divergence-free Solutions of the Navier-Stokes
Equations” by Cockburn et al, and “On the Divergence Constraint in
Mixed Finite Element Methods for Incompressible Flows” by John et al.
Governing equations
We consider the incompressible Navier-Stokes equations in a domain \(\Omega \subset \mathbb{R}^d\), \(d \in \{2, 3\}\), and time interval \((0, \infty)\), given by
where \(u: \Omega_t \to \mathbb{R}^d\) is the velocity field, \(p: \Omega_t \to \mathbb{R}\) is the pressure field, \(f: \Omega_t \to \mathbb{R}^d\) is a prescribed force, \(\nu \in \mathbb{R}^+\) is the kinematic viscosity, and \(\Omega_t := \Omega \times (0, \infty)\).
The problem is supplemented with the initial condition
and boundary condition
where \(u_0: \Omega \to \mathbb{R}^d\) is a prescribed initial velocity field which satisfies the divergence free condition. The pressure field is only determined up to a constant, so we seek the unique pressure field satisfying
Discrete problem
We begin by introducing the function spaces
The local spaces \(V_h(K)\) and \(Q_h(K)\) should satisfy
in order for mass to be conserved exactly. Suitable choices on affine simplex cells include
or
Let two cells \(K^+\) and \(K^-\) share a facet \(F\). The trace of a piecewise smooth vector valued function \(\phi\) on F taken approaching from inside \(K^+\) (resp. \(K^-\)) is denoted \(\phi^{+}\) (resp. \(\phi^-\)). We now introduce the average \(\renewcommand{\avg}[1]{\left\{\!\!\left\{#1\right\}\!\!\right\}}\)
and jump \(\renewcommand{\jump}[1]{[\![ #1 ]\!]}\)
operators, where \(n\) denotes the outward unit normal to \(\partial K\). Finally, let the upwind flux of \(\phi\) with respect to a vector field \(\psi\) be defined as
where \(\Gamma^\psi = \left\{x \in \Gamma; \; \psi(x) \cdot n(x) < 0\right\}\).
The semi-discrete version problem (in dimensionless form) is: find \((u_h, p_h) \in V_h^{u_D} \times Q_h\) such that
where \(\renewcommand{\sumK}[0]{\sum_{K \in \mathcal{T}_h}}\) \(\renewcommand{\sumF}[0]{\sum_{F \in \mathcal{F}_h}}\)
Implementation
We begin by importing the required modules and functions
import importlib.util
if importlib.util.find_spec("petsc4py") is not None:
import dolfinx
if not dolfinx.has_petsc:
print("This demo requires DOLFINx to be compiled with PETSc enabled.")
exit(0)
else:
print("This demo requires petsc4py.")
exit(0)
from mpi4py import MPI
import numpy as np
from dolfinx import default_real_type, fem, io, mesh
from dolfinx.fem.petsc import assemble_matrix_block, assemble_vector_block
from ufl import (
CellDiameter,
FacetNormal,
MixedFunctionSpace,
TestFunctions,
TrialFunctions,
avg,
conditional,
div,
dot,
dS,
ds,
dx,
extract_blocks,
grad,
gt,
inner,
outer,
)
try:
from petsc4py import PETSc
import dolfinx
if not dolfinx.has_petsc:
print("This demo requires DOLFINx to be compiled with PETSc enabled.")
exit(0)
except ModuleNotFoundError:
print("This demo requires petsc4py.")
exit(0)
if np.issubdtype(PETSc.ScalarType, np.complexfloating): # type: ignore
print("Demo should only be executed with DOLFINx real mode")
exit(0)
We also define some helper functions that will be used later
def norm_L2(comm, v):
"""Compute the L2(Ω)-norm of v"""
return np.sqrt(comm.allreduce(fem.assemble_scalar(fem.form(inner(v, v) * dx)), op=MPI.SUM))
def domain_average(msh, v):
"""Compute the average of a function over the domain"""
vol = msh.comm.allreduce(
fem.assemble_scalar(fem.form(fem.Constant(msh, default_real_type(1.0)) * dx)), op=MPI.SUM
)
return (1 / vol) * msh.comm.allreduce(fem.assemble_scalar(fem.form(v * dx)), op=MPI.SUM)
def u_e_expr(x):
"""Expression for the exact velocity solution to Kovasznay flow"""
return np.vstack(
(
1
- np.exp((Re / 2 - np.sqrt(Re**2 / 4 + 4 * np.pi**2)) * x[0])
* np.cos(2 * np.pi * x[1]),
(Re / 2 - np.sqrt(Re**2 / 4 + 4 * np.pi**2))
/ (2 * np.pi)
* np.exp((Re / 2 - np.sqrt(Re**2 / 4 + 4 * np.pi**2)) * x[0])
* np.sin(2 * np.pi * x[1]),
)
)
def p_e_expr(x):
"""Expression for the exact pressure solution to Kovasznay flow"""
return (1 / 2) * (1 - np.exp(2 * (Re / 2 - np.sqrt(Re**2 / 4 + 4 * np.pi**2)) * x[0]))
def f_expr(x):
"""Expression for the applied force"""
return np.vstack((np.zeros_like(x[0]), np.zeros_like(x[0])))
We define some simulation parameters
n = 16
num_time_steps = 25
t_end = 10
Re = 25 # Reynolds Number
k = 1 # Polynomial degree
Next, we create a mesh and the required functions spaces over it. Since the velocity uses an \(H(\text{div})\)-conforming function space, we also create a vector valued discontinuous Lagrange space to interpolate into for artifact free visualisation.
msh = mesh.create_unit_square(MPI.COMM_WORLD, n, n)
# Function spaces for the velocity and for the pressure
V = fem.functionspace(msh, ("Raviart-Thomas", k + 1))
Q = fem.functionspace(msh, ("Discontinuous Lagrange", k))
VQ = MixedFunctionSpace(V, Q)
# Funcion space for visualising the velocity field
gdim = msh.geometry.dim
W = fem.functionspace(msh, ("Discontinuous Lagrange", k + 1, (gdim,)))
# Define trial and test functions
u, p = TrialFunctions(VQ)
v, q = TestFunctions(VQ)
delta_t = fem.Constant(msh, default_real_type(t_end / num_time_steps))
alpha = fem.Constant(msh, default_real_type(6.0 * k**2))
h = CellDiameter(msh)
n = FacetNormal(msh)
def jump(phi, n):
return outer(phi("+"), n("+")) + outer(phi("-"), n("-"))
We solve the Stokes problem for the initial condition, omitting the convective term:
a = (1.0 / Re) * (
inner(grad(u), grad(v)) * dx
- inner(avg(grad(u)), jump(v, n)) * dS
- inner(jump(u, n), avg(grad(v))) * dS
+ (alpha / avg(h)) * inner(jump(u, n), jump(v, n)) * dS
- inner(grad(u), outer(v, n)) * ds
- inner(outer(u, n), grad(v)) * ds
+ (alpha / h) * inner(outer(u, n), outer(v, n)) * ds
)
a -= inner(p, div(v)) * dx
a -= inner(div(u), q) * dx
a_blocked = fem.form(extract_blocks(a))
f = fem.Function(W)
u_D = fem.Function(V)
u_D.interpolate(u_e_expr)
L = inner(f, v) * dx + (1 / Re) * (
-inner(outer(u_D, n), grad(v)) * ds + (alpha / h) * inner(outer(u_D, n), outer(v, n)) * ds
)
L += inner(fem.Constant(msh, default_real_type(0.0)), q) * dx
L_blocked = fem.form(extract_blocks(L))
# Boundary conditions
boundary_facets = mesh.exterior_facet_indices(msh.topology)
boundary_vel_dofs = fem.locate_dofs_topological(V, msh.topology.dim - 1, boundary_facets)
bc_u = fem.dirichletbc(u_D, boundary_vel_dofs)
bcs = [bc_u]
# Assemble Stokes problem
A = assemble_matrix_block(a_blocked, bcs=bcs)
A.assemble()
b = assemble_vector_block(L_blocked, a_blocked, bcs=bcs)
# Create and configure solver
ksp = PETSc.KSP().create(msh.comm) # type: ignore
ksp.setOperators(A)
ksp.setType("preonly")
ksp.getPC().setType("lu")
ksp.getPC().setFactorSolverType("mumps")
opts = PETSc.Options() # type: ignore
opts["mat_mumps_icntl_14"] = 80 # Increase MUMPS working memory
opts["mat_mumps_icntl_24"] = 1 # Option to support solving a singular matrix (pressure nullspace)
opts["mat_mumps_icntl_25"] = 0 # Option to support solving a singular matrix (pressure nullspace)
opts["ksp_error_if_not_converged"] = 1
ksp.setFromOptions()
# Solve Stokes for initial condition
x = A.createVecRight()
try:
ksp.solve(b, x)
except PETSc.Error as e: # type: ignore
if e.ierr == 92:
print("The required PETSc solver/preconditioner is not available. Exiting.")
print(e)
exit(0)
else:
raise e
# Split the solution
u_h = fem.Function(V)
p_h = fem.Function(Q)
p_h.name = "p"
offset = V.dofmap.index_map.size_local * V.dofmap.index_map_bs
u_h.x.array[:offset] = x.array_r[:offset]
u_h.x.scatter_forward()
p_h.x.array[: (len(x.array_r) - offset)] = x.array_r[offset:]
p_h.x.scatter_forward()
# Subtract the average of the pressure since it is only determined up to
# a constant
p_h.x.array[:] -= domain_average(msh, p_h)
u_vis = fem.Function(W)
u_vis.name = "u"
u_vis.interpolate(u_h)
# Write initial condition to file
t = 0.0
try:
u_file = io.VTXWriter(msh.comm, "u.bp", u_vis)
p_file = io.VTXWriter(msh.comm, "p.bp", p_h)
u_file.write(t)
p_file.write(t)
except AttributeError:
print("File output requires ADIOS2.")
# Create function to store solution and previous time step
u_n = fem.Function(V)
u_n.x.array[:] = u_h.x.array
Now we add the time stepping and convective terms
lmbda = conditional(gt(dot(u_n, n), 0), 1, 0)
u_uw = lmbda("+") * u("+") + lmbda("-") * u("-")
a += (
inner(u / delta_t, v) * dx
- inner(u, div(outer(v, u_n))) * dx
+ inner((dot(u_n, n))("+") * u_uw, v("+")) * dS
+ inner((dot(u_n, n))("-") * u_uw, v("-")) * dS
+ inner(dot(u_n, n) * lmbda * u, v) * ds
)
a_blocked = fem.form(extract_blocks(a))
L += inner(u_n / delta_t, v) * dx - inner(dot(u_n, n) * (1 - lmbda) * u_D, v) * ds
L_blocked = fem.form(extract_blocks(L))
# Time stepping loop
for n in range(num_time_steps):
t += delta_t.value
A.zeroEntries()
fem.petsc.assemble_matrix_block(A, a_blocked, bcs=bcs) # type: ignore
A.assemble()
with b.localForm() as b_loc:
b_loc.set(0)
fem.petsc.assemble_vector_block(b, L_blocked, a_blocked, bcs=bcs) # type: ignore
# Compute solution
ksp.solve(b, x)
u_h.x.array[:offset] = x.array_r[:offset]
u_h.x.scatter_forward()
p_h.x.array[: (len(x.array_r) - offset)] = x.array_r[offset:]
p_h.x.scatter_forward()
p_h.x.array[:] -= domain_average(msh, p_h)
u_vis.interpolate(u_h)
# Write to file
try:
u_file.write(t)
p_file.write(t)
except NameError:
pass
# Update u_n
u_n.x.array[:] = u_h.x.array
try:
u_file.close()
p_file.close()
except NameError:
pass
Now we compare the computed solution to the exact solution
# Function spaces for exact velocity and pressure
V_e = fem.functionspace(msh, ("Lagrange", k + 3, (gdim,)))
Q_e = fem.functionspace(msh, ("Lagrange", k + 2))
u_e = fem.Function(V_e)
u_e.interpolate(u_e_expr)
p_e = fem.Function(Q_e)
p_e.interpolate(p_e_expr)
# Compute errors
e_u = norm_L2(msh.comm, u_h - u_e)
e_div_u = norm_L2(msh.comm, div(u_h))
# This scheme conserves mass exactly, so check this
assert np.isclose(e_div_u, 0.0, atol=float(1.0e5 * np.finfo(default_real_type).eps))
p_e_avg = domain_average(msh, p_e)
e_p = norm_L2(msh.comm, p_h - (p_e - p_e_avg))
if msh.comm.rank == 0:
print(f"e_u = {e_u}")
print(f"e_div_u = {e_div_u}")
print(f"e_p = {e_p}")