Poisson equation
This demo is implemented in demo_poisson.py. It
illustrates how to:
Create a
function spaceSolve a linear partial differential equation
Equation and problem definition
For a domain \(\Omega \subset \mathbb{R}^n\) with boundary \(\partial \Omega = \Gamma_{D} \cup \Gamma_{N}\), the Poisson equation with particular boundary conditions reads:
where \(f\) and \(g\) are input data and \(n\) denotes the outward directed boundary normal. The variational problem reads: find \(u \in V\) such that
where \(V\) is a suitable function space and
The expression \(a(u, v)\) is the bilinear form and \(L(v)\) is the linear form. It is assumed that all functions in \(V\) satisfy the Dirichlet boundary conditions (\(u = 0 \ {\rm on} \ \Gamma_{D}\)).
In this demo we consider:
\(\Omega = [0,2] \times [0,1]\) (a rectangle)
\(\Gamma_{D} = \{(0, y) \cup (2, y) \subset \partial \Omega\}\)
\(\Gamma_{N} = \{(x, 0) \cup (x, 1) \subset \partial \Omega\}\)
\(g = \sin(5x)\)
\(f = 10\exp(-((x - 0.5)^2 + (y - 0.5)^2) / 0.02)\)
Implementation
The modules that will be used are imported:
import importlib.util
if importlib.util.find_spec("petsc4py") is not None:
import dolfinx
if not dolfinx.has_petsc:
print("This demo requires DOLFINx to be compiled with PETSc enabled.")
exit(0)
from petsc4py.PETSc import ScalarType # type: ignore
else:
print("This demo requires petsc4py.")
exit(0)
from mpi4py import MPI
import numpy as np
import ufl
from dolfinx import fem, io, mesh, plot
from dolfinx.fem.petsc import LinearProblem
from ufl import ds, dx, grad, inner
Note that it is important to first from mpi4py import MPI to
ensure that MPI is correctly initialised.
We create a rectangular Mesh using
create_rectangle, and
create a finite element function space \(V\) on the mesh.
msh = mesh.create_rectangle(
comm=MPI.COMM_WORLD,
points=((0.0, 0.0), (2.0, 1.0)),
n=(32, 16),
cell_type=mesh.CellType.triangle,
)
V = fem.functionspace(msh, ("Lagrange", 1))
The second argument to functionspace is a tuple (family, degree), where
family is the finite element family, and degree specifies the
polynomial degree. In this case V is a space of continuous Lagrange
finite elements of degree 1.
To apply the Dirichlet boundary conditions, we find the mesh facets
(entities of topological co-dimension 1) that lie on the boundary
\(\Gamma_D\) using locate_entities_boundary. The function is provided
with a ‘marker’ function that returns True for points x on the
boundary and False otherwise.
facets = mesh.locate_entities_boundary(
msh,
dim=(msh.topology.dim - 1),
marker=lambda x: np.isclose(x[0], 0.0) | np.isclose(x[0], 2.0),
)
We now find the degrees-of-freedom that are associated with the
boundary facets using locate_dofs_topological:
dofs = fem.locate_dofs_topological(V=V, entity_dim=1, entities=facets)
and use dirichletbc to create a
DirichletBC class that
represents the boundary condition:
bc = fem.dirichletbc(value=ScalarType(0), dofs=dofs, V=V)
Next, the variational problem is defined:
u = ufl.TrialFunction(V)
v = ufl.TestFunction(V)
x = ufl.SpatialCoordinate(msh)
f = 10 * ufl.exp(-((x[0] - 0.5) ** 2 + (x[1] - 0.5) ** 2) / 0.02)
g = ufl.sin(5 * x[0])
a = inner(grad(u), grad(v)) * dx
L = inner(f, v) * dx + inner(g, v) * ds
A LinearProblem object is
created that brings together the variational problem, the Dirichlet
boundary condition, and which specifies the linear solver. In this
case an LU solver is used. The solve computes the solution.
problem = LinearProblem(a, L, bcs=[bc], petsc_options={"ksp_type": "preonly", "pc_type": "lu"})
uh = problem.solve()
The solution can be written to a XDMFFile file visualization with ParaView or VisIt:
with io.XDMFFile(msh.comm, "out_poisson/poisson.xdmf", "w") as file:
file.write_mesh(msh)
file.write_function(uh)
and displayed using pyvista.
try:
import pyvista
cells, types, x = plot.vtk_mesh(V)
grid = pyvista.UnstructuredGrid(cells, types, x)
grid.point_data["u"] = uh.x.array.real
grid.set_active_scalars("u")
plotter = pyvista.Plotter()
plotter.add_mesh(grid, show_edges=True)
warped = grid.warp_by_scalar()
plotter.add_mesh(warped)
if pyvista.OFF_SCREEN:
pyvista.start_xvfb(wait=0.1)
plotter.screenshot("uh_poisson.png")
else:
plotter.show()
except ModuleNotFoundError:
print("'pyvista' is required to visualise the solution")
print("Install 'pyvista' with pip: 'python3 -m pip install pyvista'")