dolfinx.la
Linear algebra functionality
Functions
|
Check that list of vectors are orthonormal. |
|
Create a distributed sparse matrix. |
|
Compute a norm of the vector. |
|
Orthogonalise set of vectors in-place. |
|
Create a distributed vector. |
Classes
|
|
|
A distributed sparse matrix that uses compressed sparse row storage. |
|
|
|
A distributed vector object. |
- class dolfinx.la.MatrixCSR(A: MatrixCSR_float32 | MatrixCSR_float64 | MatrixCSR_complex64 | MatrixCSR_complex128)[source]
Bases:
object
A distributed sparse matrix that uses compressed sparse row storage.
Note
Objects of this type should be created using
matrix_csr()
and not created using this initialiser.- Parameters:
A – The C++/nanobind matrix object.
- add(x: ndarray[Any, dtype[floating]], rows: ndarray[Any, dtype[int32]], cols: ndarray[Any, dtype[int32]], bs: int = 1) None [source]
Add a block of values in the matrix.
- property block_size: list
Block sizes for the matrix.
- property data: ndarray[Any, dtype[floating]]
Underlying matrix entry data.
- index_map(i: int) IndexMap [source]
Index map for row/column.
- Parameters:
i – 0 for row map, 1 for column map.
- property indices: ndarray[Any, dtype[int32]]
Local column indices.
- property indptr: ndarray[Any, dtype[int64]]
Local row pointers.
- mult(x: Vector, y: Vector) None [source]
Compute
y += Ax
.- Parameters:
x – Input Vector
y – Output Vector
- set(x: ndarray[Any, dtype[floating]], rows: ndarray[Any, dtype[int32]], cols: ndarray[Any, dtype[int32]], bs: int = 1) None [source]
Set a block of values in the matrix.
- set_value(x: floating) None [source]
Set all non-zero entries to a value.
- Parameters:
x – The value to set all non-zero entries to.
- squared_norm() floating [source]
Compute the squared Frobenius norm.
Note
This operation is collective and requires communication.
- to_dense() ndarray[Any, dtype[floating]] [source]
Copy to a dense 2D array.
Note
Typically used for debugging.
- to_scipy(ghosted: bool = False)[source]
Convert to a SciPy CSR/BSR matrix. Data is shared.
Note
SciPy must be available.
- Parameters:
ghosted – If
True
rows that are ghosted in parallel are included in the returned SciPy matrix, otherwise ghost rows are not included.- Returns:
SciPy compressed sparse row (both block sizes equal to one) or a SciPy block compressed sparse row matrix.
- class dolfinx.la.Vector(x: Vector_float32 | Vector_float64 | Vector_complex64 | Vector_complex128 | Vector_int8 | Vector_int32 | Vector_int64)[source]
Bases:
object
A distributed vector object.
- Parameters:
x – C++ Vector object.
Note
This initialiser is intended for internal library use only. User code should call
vector()
to create a vector object.- property array: ndarray
Local representation of the vector.
- property block_size: int
Block size for the vector.
- property petsc_vec
PETSc vector holding the entries of the vector.
Upon first call, this function creates a PETSc
Vec
object that wraps the degree-of-freedom data. TheVec
object is cached and the cachedVec
is returned upon subsequent calls.Note
When the object is destroyed it will destroy the underlying petsc4py vector automatically.
- scatter_reverse(mode: InsertMode) None [source]
Scatter ghost entries to owner.
- Parameters:
mode – Control how scattered values are set/accumulated by owner.
- dolfinx.la.is_orthonormal(basis: list[Vector], eps: float = 1e-12) bool [source]
Check that list of vectors are orthonormal.
- dolfinx.la.matrix_csr(sp: ~dolfinx.cpp.la.SparsityPattern, block_mode=BlockMode.compact, dtype: ~numpy.dtype[~typing.Any] | None | type[~typing.Any] | ~numpy._typing._dtype_like._SupportsDType[~numpy.dtype[~typing.Any]] | str | tuple[~typing.Any, int] | tuple[~typing.Any, ~typing.SupportsIndex | ~collections.abc.Sequence[~typing.SupportsIndex]] | list[~typing.Any] | ~numpy._typing._dtype_like._DTypeDict | tuple[~typing.Any, ~typing.Any] = <class 'numpy.float64'>) MatrixCSR [source]
Create a distributed sparse matrix.
The matrix uses compressed sparse row storage.
- Parameters:
sp – The sparsity pattern that defines the nonzero structure of the matrix the parallel distribution of the matrix.
dtype – The scalar type.
- Returns:
A sparse matrix.
- dolfinx.la.norm(x: Vector, type: Norm = Norm.l2) floating [source]
Compute a norm of the vector.
- Parameters:
x – Vector to measure.
type – Norm type to compute.
- Returns:
Computed norm.
- dolfinx.la.vector(map, bs=1, dtype: ~numpy.dtype[~typing.Any] | None | type[~typing.Any] | ~numpy._typing._dtype_like._SupportsDType[~numpy.dtype[~typing.Any]] | str | tuple[~typing.Any, int] | tuple[~typing.Any, ~typing.SupportsIndex | ~collections.abc.Sequence[~typing.SupportsIndex]] | list[~typing.Any] | ~numpy._typing._dtype_like._DTypeDict | tuple[~typing.Any, ~typing.Any] = <class 'numpy.float64'>) Vector [source]
Create a distributed vector.
- Parameters:
map – Index map the describes the size and distribution of the vector.
bs – Block size.
dtype – The scalar type.
- Returns:
A distributed vector.