Static condensation of linear elasticity

Copyright (C) 2020 Michal Habera and Andreas Zilian

Download sources

This demo solves a Cook’s plane stress elasticity test in a mixed space formulation. The test is a sloped cantilever under upward traction force at free end. Static condensation of internal (stress) degrees-of-freedom is demonstrated.

This demo illustrates how to:

  • Use static condensation with numba on variational forms made with UFL.

  • Extracting JIT compiled C-kernels using ffcx_jit

This demo requires more modules than usual, as it uses numba for efficient static condensation.

from pathlib import Path

from mpi4py import MPI
from petsc4py import PETSc

import cffi
import numba
import numba.core.typing.cffi_utils as cffi_support
import numpy as np

import ufl
from basix.ufl import element
from dolfinx import default_real_type, default_scalar_type, geometry
from dolfinx.fem import (
    Form,
    Function,
    IntegralType,
    dirichletbc,
    form,
    form_cpp_class,
    functionspace,
    locate_dofs_topological,
)
from dolfinx.fem.petsc import apply_lifting, assemble_matrix, assemble_vector
from dolfinx.io import XDMFFile
from dolfinx.jit import ffcx_jit
from dolfinx.mesh import locate_entities_boundary, meshtags
from ffcx.codegeneration.utils import empty_void_pointer
from ffcx.codegeneration.utils import numba_ufcx_kernel_signature as ufcx_signature
rtype = default_real_type
dtype = default_scalar_type
if np.issubdtype(rtype, np.float32):  # type: ignore
    print("float32 not yet supported for this demo.")
    exit(0)

We start by reading in the Cook’s mesh cooks_tri_mesh.xdmf using XDMFFile.read_mesh. Note that the mesh is written in plain-text format, which means we use XDMFFile.Encoding.ASCII.

infile = XDMFFile(
    MPI.COMM_WORLD,
    Path(Path(__file__).parent, "data", "cooks_tri_mesh.xdmf"),
    "r",
    encoding=XDMFFile.Encoding.ASCII,
)
msh = infile.read_mesh(name="Grid")
infile.close()

We create the Stress (Se) and displacement (Ue) elements and corresponding function spaces. Note that the stress element is symmetric.

gdim = msh.geometry.dim
Se = element("DG", msh.basix_cell(), 1, shape=(gdim, gdim), symmetry=True, dtype=rtype)  # type: ignore
Ue = element("Lagrange", msh.basix_cell(), 2, shape=(gdim,), dtype=rtype)  # type: ignore
S = functionspace(msh, Se)
U = functionspace(msh, Ue)

Next, we define the trial and test functions for stress and displacement,

Locate all facets at the free end and assign them value 1. Sort the facet indices (requirement for constructing MeshTags).

tdim = msh.topology.dim
free_end_facets = np.sort(locate_entities_boundary(msh, tdim - 1, lambda x: np.isclose(x[0], 48.0)))
mt = meshtags(msh, tdim - 1, free_end_facets, 1)

Next, we create an integration measure with the facet markers.

ds = ufl.Measure("ds", subdomain_data=mt)

Homogeneous boundary condition in displacement

u_bc = Function(U)
u_bc.x.array[:] = 0

Displacement BC is applied to the left side

left_facets = locate_entities_boundary(msh, tdim - 1, lambda x: np.isclose(x[0], 0.0))
bdofs = locate_dofs_topological(U, tdim - 1, left_facets)
bc = dirichletbc(u_bc, bdofs)

Elastic stiffness tensor and Poisson ratio

E, nu = 1.0, 1.0 / 3.0


def sigma_u(u):
    """Constitutive relation for stress-strain. Assuming plane-stress in
    XY"""
    eps = 0.5 * (ufl.grad(u) + ufl.grad(u).T)
    sigma = E / (1.0 - nu**2) * ((1.0 - nu) * eps + nu * ufl.Identity(2) * ufl.tr(eps))
    return sigma

With the definitions above, we can define the different blocks of the variational formulation

a00 = ufl.inner(sigma, tau) * ufl.dx
a10 = -ufl.inner(sigma, ufl.grad(v)) * ufl.dx
a01 = -ufl.inner(sigma_u(u), tau) * ufl.dx

f = ufl.as_vector([0.0, 1.0 / 16])
b1 = form(-ufl.inner(f, v) * ds(1), dtype=dtype)  # type: ignore

To generate (C-code) and JIT compile the kernels, we use ffcx_jit for each individual block. We extract the kernel function from the compiled form object by getting the tabulate_tensor_{dtype} attribute of the compiled form.

ufcx00, _, _ = ffcx_jit(msh.comm, a00, form_compiler_options={"scalar_type": dtype})  # type: ignore
kernel00 = getattr(ufcx00.form_integrals[0], f"tabulate_tensor_{np.dtype(dtype).name}")  # type: ignore

ufcx01, _, _ = ffcx_jit(msh.comm, a01, form_compiler_options={"scalar_type": dtype})  # type: ignore
kernel01 = getattr(ufcx01.form_integrals[0], f"tabulate_tensor_{np.dtype(dtype).name}")  # type: ignore

ufcx10, _, _ = ffcx_jit(msh.comm, a10, form_compiler_options={"scalar_type": dtype})  # type: ignore
kernel10 = getattr(ufcx10.form_integrals[0], f"tabulate_tensor_{np.dtype(dtype).name}")  # type: ignore
ffi = cffi.FFI()
if np.issubdtype(dtype, np.complexfloating):
    if cffi.__version_info__ > (1, 16, 99) and cffi.__version_info__ <= (1, 17, 1):
        print(
            "CFFI 1.17.0 and 1.17.1 has a bug for complex type."
            "See https://github.com/FEniCS/dolfinx/pull/3635. Exiting."
        )
        exit(0)
    cffi_support.register_type(ffi.typeof("double _Complex"), numba.types.complex128)

Get local dofmap sizes for later local tensor tabulations

Ssize = S.element.space_dimension
Usize = U.element.space_dimension

Next, we define a static condensation kernel that uses the previously defined kernels to compute the condensed local element tensor. The kernel is decorated with numba.cfunc() using the appropriate signature obtained from ufcx_signature().`

@numba.cfunc(ufcx_signature(dtype, rtype), nopython=True)  # type: ignore
def tabulate_A(A_, w_, c_, coords_, entity_local_index, permutation=ffi.NULL, custom_data=None):
    """Element kernel that applies static condensation."""

    # Prepare target condensed local element tensor
    A = numba.carray(A_, (Usize, Usize), dtype=dtype)

    # Tabulate all sub blocks locally
    A00 = np.zeros((Ssize, Ssize), dtype=dtype)
    kernel00(
        ffi.from_buffer(A00),
        w_,
        c_,
        coords_,
        entity_local_index,
        permutation,
        empty_void_pointer(),
    )

    A01 = np.zeros((Ssize, Usize), dtype=dtype)
    kernel01(
        ffi.from_buffer(A01),
        w_,
        c_,
        coords_,
        entity_local_index,
        permutation,
        empty_void_pointer(),
    )

    A10 = np.zeros((Usize, Ssize), dtype=dtype)
    kernel10(
        ffi.from_buffer(A10),
        w_,
        c_,
        coords_,
        entity_local_index,
        permutation,
        empty_void_pointer(),
    )

    # A = - A10 * A00^{-1} * A01
    A[:, :] = -A10 @ np.linalg.solve(A00, A01)

Prepare a Form with a condensed tabulation kernel. We specify the integration domains to be the cells owned by the current process

formtype = form_cpp_class(dtype)  # type: ignore
cells = np.arange(msh.topology.index_map(msh.topology.dim).size_local)
integrals = {IntegralType.cell: [(0, tabulate_A.address, cells, np.array([], dtype=np.int8))]}
a_cond = Form(
    formtype([U._cpp_object, U._cpp_object], integrals, [], [], False, [], mesh=msh._cpp_object)
)

Next, we pass the compiled kernel to the standard assemble_matrix function to assemble to the global condensed stiffness matrix. We also assemble the right-hand side vector using assemble_vector and apply the boundary conditions by applying lifting and set bc.

A_cond = assemble_matrix(a_cond, bcs=[bc])
A_cond.assemble()
b = assemble_vector(b1)
apply_lifting(b, [a_cond], bcs=[[bc]])
b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)  # type: ignore
bc.set(b)

We use a PETSc.KSP solver to solve the condensed linear system. The solution is stored in a Function, while we pass the underlying data wrapped as a PETSc.Vec to the solver by calling petsc_vec on the vector attribute of the function.

uc = Function(U, name="u_from_condensation")
solver = PETSc.KSP().create(A_cond.getComm())  # type: ignore
solver.setOperators(A_cond)
solver.solve(b, uc.x.petsc_vec)
solver.destroy()

We verify the condensed solution by comparing against a standard, pure displacement based formulation

a = form(-ufl.inner(sigma_u(u), ufl.grad(v)) * ufl.dx)
A = assemble_matrix(a, bcs=[bc])
A.assemble()

Create BoundingBoxTree using bb_tree constructor for efficient computation of the ownership of a set of evaluation points

bb_tree = geometry.bb_tree(msh, tdim, padding=0.0)

Check against standard table value

p = np.array([[48.0, 52.0, 0.0]], dtype=np.float64)
cell_candidates = geometry.compute_collisions_points(bb_tree, p)
cells = geometry.compute_colliding_cells(msh, cell_candidates, p).array
uc.x.scatter_forward()
if len(cells) > 0:
    value = uc.eval(p, cells[0])
    print(value[1])
    assert np.isclose(value[1], 23.95, rtol=1.0e-2)

Check the equality of displacement based and mixed condensed global matrices, i.e. check that condensation is exact

assert np.isclose((A - A_cond).norm(), 0.0)