# Helmholtz equation

Helmholtz problem in both complex and real modes In the complex mode, the exact solution is a plane wave propagating at an angle theta to the positive x-axis. Chosen for comparison with results from Ihlenburg’s book “Finite Element Analysis of Acoustic Scattering” p138-139. In real mode, the Method of Manufactured Solutions is used to produce the exact solution and source term.

from mpi4py import MPI
from petsc4py import PETSc

import numpy as np

import ufl
from dolfinx.fem import Function, assemble_scalar, form, functionspace
from dolfinx.fem.petsc import LinearProblem
from dolfinx.io import XDMFFile
from dolfinx.mesh import create_unit_square
from ufl import dx, grad, inner

# Wavenumber
k0 = 4 * np.pi

# Approximation space polynomial degree
deg = 1

# Number of elements in each direction of the mesh
n_elem = 128

msh = create_unit_square(MPI.COMM_WORLD, n_elem, n_elem)
n = ufl.FacetNormal(msh)

# Source amplitude
if np.issubdtype(PETSc.ScalarType, np.complexfloating):  # type: ignore
A = PETSc.ScalarType(1 + 1j)  # type: ignore
else:
A = 1

# Test and trial function space
V = functionspace(msh, ("Lagrange", deg))

# Define variational problem
u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
f = Function(V)
f.interpolate(lambda x: A * k0**2 * np.cos(k0 * x) * np.cos(k0 * x))
a = inner(grad(u), grad(v)) * dx - k0**2 * inner(u, v) * dx
L = inner(f, v) * dx

# Compute solution
uh = Function(V)
uh.name = "u"
problem = LinearProblem(a, L, u=uh, petsc_options={"ksp_type": "preonly", "pc_type": "lu"})
problem.solve()

# Save solution in XDMF format (to be viewed in ParaView, for example)
with XDMFFile(MPI.COMM_WORLD, "out_helmholtz/plane_wave.xdmf", "w", encoding=XDMFFile.Encoding.HDF5) as file:
file.write_mesh(msh)
file.write_function(uh)


Calculate $$L_2$$ and $$H^1$$ errors of FEM solution and best approximation. This demonstrates the error bounds given in Ihlenburg. Pollution errors are evident for high wavenumbers.

# Function space for exact solution - need it to be higher than deg
V_exact = functionspace(msh, ("Lagrange", deg + 3))
u_exact = Function(V_exact)
u_exact.interpolate(lambda x: A * np.cos(k0 * x) * np.cos(k0 * x))

# H1 errors
diff = uh - u_exact