Electromagnetic scattering from a wire with PML
Copyright (C) 2022 Michele Castriotta, Igor Baratta, Jørgen S. Dokken
Download sources
This demo illustrates how to:
Use complex quantities in FEniCSx
Setup and solve Maxwell’s equations
Implement (rectangular) perfectly matched layers (PMLs)
First, we import the required modules
import sys
from functools import partial, reduce
from mpi4py import MPI
from petsc4py import PETSc
import gmsh
import numpy as np
from scipy.special import h2vp, hankel2, jv, jvp
import dolfinx
import ufl
from basix.ufl import element
from dolfinx import default_real_type, default_scalar_type, fem, mesh, plot
from dolfinx.fem.petsc import LinearProblem
from dolfinx.io import gmsh as gmshio
try:
from dolfinx.io import VTXWriter
except ImportError:
print("This demo requires DOLFINx to be configured with adios2.")
exit(0)
try:
import pyvista
have_pyvista = True
except ModuleNotFoundError:
print("pyvista and pyvistaqt are required to visualise the solution")
have_pyvista = False
Since we want to solve time-harmonic Maxwell’s equation, we require that the demo is executed with DOLFINx (PETSc) complex mode.
if not np.issubdtype(default_scalar_type, np.complexfloating):
print("Demo should only be executed with DOLFINx complex mode")
exit(0)
Mesh generation with GMSH
The mesh is made up by a central circle (the wire), and an external
layer (the PML) divided in 4 rectangles and 4 squares at the corners.
The generate_mesh_wire
function takes as input:
radius_wire
: the radius of the wireradius_scatt
: the radius of the circle where scattering efficiency is calculatedl_dom
: length of real domainl_pml
: length of PML layerin_wire_size
: the mesh size at a distance0.8 * radius_wire
from the originon_wire_size
: the mesh size on the wire boundaryscatt_size
: the mesh size on the circle where scattering efficiency is calculatedpml_size
: the mesh size on the outer boundary of the PMLau_tag
: the tag of the physical group representing the wirebkg_tag
: the tag of the physical group representing the backgroundscatt_tag
: the tag of the physical group representing the boundary where scattering efficiency is calculatedpml_tag
: the tag of the physical group representing the PML (together with pml_tag+1 and pml_tag+2)
def generate_mesh_wire(
radius_wire: float,
radius_scatt: float,
l_dom: float,
l_pml: float,
in_wire_size: float,
on_wire_size: float,
scatt_size: float,
pml_size: float,
au_tag: int,
bkg_tag: int,
scatt_tag: int,
pml_tag: int,
):
dim = 2
# A dummy circle for setting a finer mesh
c1 = gmsh.model.occ.addCircle(0.0, 0.0, 0.0, radius_wire * 0.8, angle1=0.0, angle2=2 * np.pi)
gmsh.model.occ.addCurveLoop([c1], tag=c1)
gmsh.model.occ.addPlaneSurface([c1], tag=c1)
c2 = gmsh.model.occ.addCircle(0.0, 0.0, 0.0, radius_wire, angle1=0, angle2=2 * np.pi)
gmsh.model.occ.addCurveLoop([c2], tag=c2)
gmsh.model.occ.addPlaneSurface([c2], tag=c2)
wire, _ = gmsh.model.occ.fragment([(dim, c2)], [(dim, c1)])
# A dummy circle for the calculation of the scattering efficiency
c3 = gmsh.model.occ.addCircle(0.0, 0.0, 0.0, radius_scatt, angle1=0, angle2=2 * np.pi)
gmsh.model.occ.addCurveLoop([c3], tag=c3)
gmsh.model.occ.addPlaneSurface([c3], tag=c3)
r0 = gmsh.model.occ.addRectangle(-l_dom / 2, -l_dom / 2, 0, l_dom, l_dom)
inclusive_rectangle, _ = gmsh.model.occ.fragment([(dim, r0)], [(dim, c3)])
delta_pml = (l_pml - l_dom) / 2
separate_rectangle, _ = gmsh.model.occ.cut(inclusive_rectangle, wire, removeTool=False)
_, physical_domain = gmsh.model.occ.fragment(separate_rectangle, wire)
bkg_tags = [tag[0] for tag in physical_domain[: len(separate_rectangle)]]
wire_tags = [
tag[0]
for tag in physical_domain[len(separate_rectangle) : len(inclusive_rectangle) + len(wire)]
]
# Corner PMLS
pml1 = gmsh.model.occ.addRectangle(-l_pml / 2, l_dom / 2, 0, delta_pml, delta_pml)
pml2 = gmsh.model.occ.addRectangle(-l_pml / 2, -l_pml / 2, 0, delta_pml, delta_pml)
pml3 = gmsh.model.occ.addRectangle(l_dom / 2, l_dom / 2, 0, delta_pml, delta_pml)
pml4 = gmsh.model.occ.addRectangle(l_dom / 2, -l_pml / 2, 0, delta_pml, delta_pml)
corner_pmls = [(dim, pml1), (dim, pml2), (dim, pml3), (dim, pml4)]
# X pmls
pml5 = gmsh.model.occ.addRectangle(-l_pml / 2, -l_dom / 2, 0, delta_pml, l_dom)
pml6 = gmsh.model.occ.addRectangle(l_dom / 2, -l_dom / 2, 0, delta_pml, l_dom)
x_pmls = [(dim, pml5), (dim, pml6)]
# Y pmls
pml7 = gmsh.model.occ.addRectangle(-l_dom / 2, l_dom / 2, 0, l_dom, delta_pml)
pml8 = gmsh.model.occ.addRectangle(-l_dom / 2, -l_pml / 2, 0, l_dom, delta_pml)
y_pmls = [(dim, pml7), (dim, pml8)]
_, surface_map = gmsh.model.occ.fragment(bkg_tags + wire_tags, corner_pmls + x_pmls + y_pmls)
gmsh.model.occ.synchronize()
bkg_group = [tag[0][1] for tag in surface_map[: len(bkg_tags)]]
gmsh.model.addPhysicalGroup(dim, bkg_group, tag=bkg_tag)
wire_group = [tag[0][1] for tag in surface_map[len(bkg_tags) : len(bkg_tags + wire_tags)]]
gmsh.model.addPhysicalGroup(dim, wire_group, tag=au_tag)
corner_group = [
tag[0][1]
for tag in surface_map[len(bkg_tags + wire_tags) : len(bkg_tags + wire_tags + corner_pmls)]
]
gmsh.model.addPhysicalGroup(dim, corner_group, tag=pml_tag)
x_group = [
tag[0][1]
for tag in surface_map[
len(bkg_tags + wire_tags + corner_pmls) : len(
bkg_tags + wire_tags + corner_pmls + x_pmls
)
]
]
gmsh.model.addPhysicalGroup(dim, x_group, tag=pml_tag + 1)
y_group = [
tag[0][1]
for tag in surface_map[
len(bkg_tags + wire_tags + corner_pmls + x_pmls) : len(
bkg_tags + wire_tags + corner_pmls + x_pmls + y_pmls
)
]
]
gmsh.model.addPhysicalGroup(dim, y_group, tag=pml_tag + 2)
# Marker interior surface in bkg group
boundaries: list[np.typing.NDArray[np.int32]] = []
for tag in bkg_group:
boundary_pairs = gmsh.model.get_boundary([(dim, tag)], oriented=False)
boundaries.append(np.asarray([pair[1] for pair in boundary_pairs], dtype=np.int32))
interior_boundary = reduce(np.intersect1d, boundaries)
gmsh.model.addPhysicalGroup(dim - 1, interior_boundary, tag=scatt_tag)
gmsh.model.mesh.setSize([(0, 1)], size=in_wire_size)
gmsh.model.mesh.setSize([(0, 2)], size=on_wire_size)
gmsh.model.mesh.setSize([(0, 3)], size=scatt_size)
gmsh.model.mesh.setSize([(0, x) for x in range(4, 40)], size=pml_size)
gmsh.model.mesh.generate(2)
return gmsh.model
Mathematical formulation
Following are convenience functions for the calculation of the absorption, scattering and extinction efficiencies of a wire being hit normally by a TM-polarized electromagnetic wave. See Scattering boundary conditions: Mathematical formulation for a detailed description.
def compute_a(nu: int, m: complex, alpha: float) -> float:
J_nu_alpha = jv(nu, alpha)
J_nu_malpha = jv(nu, m * alpha)
J_nu_alpha_p = jvp(nu, alpha, 1)
J_nu_malpha_p = jvp(nu, m * alpha, 1)
H_nu_alpha = hankel2(nu, alpha)
H_nu_alpha_p = h2vp(nu, alpha, 1)
a_nu_num = J_nu_alpha * J_nu_malpha_p - m * J_nu_malpha * J_nu_alpha_p
a_nu_den = H_nu_alpha * J_nu_malpha_p - m * J_nu_malpha * H_nu_alpha_p
return a_nu_num / a_nu_den
def calculate_analytical_efficiencies(
eps: complex, n_bkg: float, wl0: float, radius_wire: float, num_n: int = 50
) -> tuple[float, float, float]:
m = np.sqrt(np.conj(eps)) / n_bkg
alpha = 2 * np.pi * radius_wire / wl0 * n_bkg
c = 2 / alpha
q_ext = c * np.real(compute_a(0, m, alpha))
q_sca = c * np.abs(compute_a(0, m, alpha)) ** 2
for nu in range(1, num_n + 1):
q_ext += c * 2 * np.real(compute_a(nu, m, alpha))
q_sca += c * 2 * np.abs(compute_a(nu, m, alpha)) ** 2
return q_ext - q_sca, q_sca, q_ext
Perfectly matched layers (PMLs)
Now, let’s consider an infinite metallic wire immersed in a background medium (e.g. vacuum or water). Let’s now consider the plane cutting the wire perpendicularly to its axis at a generic point. Such plane \(\Omega=\Omega_{m} \cup\Omega_{b}\) is formed by the cross-section of the wire \(\Omega_m\) and the background medium \(\Omega_{b}\) surrounding the wire. We limit the background medium with a squared perfectly matched layer (or shortly PML), which will act as an absorber for outgoing scattered waves.
The goal of this demo is to calculate the electric field \(\mathbf{E}_s\) scattered by the wire when a background wave \(\mathbf{E}_b\) impinges on it. We will consider a background plane wave at \(\lambda_0\) wavelength, which can be written analytically as:
with \(\mathbf{k} = \frac{2\pi}{\lambda_0}n_b\hat{\mathbf{u}}_k\) being the wavevector of the plane wave, pointing along the propagation direction, with \(\hat{\mathbf{u}}_p\) being the polarization direction, and with \(\mathbf{r}\) being a point in \(\Omega\). We will only consider \(\hat{\mathbf{u}}_k\) and \(\hat{\mathbf{u}}_p\) with components belonging to the \(\Omega\) domain and perpendicular to each other, i.e. \(\hat{\mathbf{u}}_k \perp \hat{\mathbf{u}}_p\) (transversality condition of plane waves). Using a Cartesian coordinate system for \(\Omega\), and by defining \(k_x = n_bk_0\cos\theta\) and \(k_y = n_bk_0\sin\theta\), with \(\theta\) being the angle defined by the propagation direction \(\hat{\mathbf{u}}_k\) and the horizontal axis \(\hat{\mathbf{u}}_x\), we have:
The function background_field
below implements this analytical
formula:
def background_field(theta: float, n_b: float, k0: complex, x: np.typing.NDArray[np.float64]):
kx = n_b * k0 * np.cos(theta)
ky = n_b * k0 * np.sin(theta)
phi = kx * x[0] + ky * x[1]
return (-np.sin(theta) * np.exp(1j * phi), np.cos(theta) * np.exp(1j * phi))
For convenience, we define the \(\nabla\times\) operator for a 2D vector
def curl_2d(a: fem.Function):
return ufl.as_vector((0, 0, a[1].dx(0) - a[0].dx(1)))
Let’s now see how we can implement PMLs for our problem. PMLs are artificial layers surrounding the real domain that gradually absorb waves impinging them. Mathematically, we can use a complex coordinate transformation of this kind to obtain this absorption:
with \(l_{dom}\) and \(l_{pml}\) being the lengths of the domain without and with PML, respectively, and with \(\alpha\) being a parameter that tunes the absorption within the PML (the bigger the \(\alpha\), the faster the absorption). In DOLFINx, we can define this coordinate transformation in the following way:
def pml_coordinates(x: ufl.indexed.Indexed, alpha: float, k0: complex, l_dom: float, l_pml: float):
return x + 1j * alpha / k0 * x * (ufl.algebra.Abs(x) - l_dom / 2) / (l_pml / 2 - l_dom / 2) ** 2
We use the following domain specific parameters:
epsilon_0 = 8.8541878128 * 10**-12
mu_0 = 4 * np.pi * 10**-7
# Radius of the wire and of the boundary of the domain
radius_wire = 0.05
l_dom = 0.8
radius_scatt = 0.8 * l_dom / 2
l_pml = 1
mesh_factor = 1 # The smaller the mesh_factor, the finer is the mesh
in_wire_size = mesh_factor * 6e-3 # Mesh size inside the wire
on_wire_size = mesh_factor * 3.0e-3 # Mesh size at the boundary of the wire
scatt_size = mesh_factor * 15.0e-3 # Mesh size in the background
pml_size = mesh_factor * 15.0e-3 # Mesh size at the boundary
# Tags for the subdomains
au_tag = 1
bkg_tag = 2
scatt_tag = 3
pml_tag = 4
We generate the mesh using GMSH and convert it to a
Mesh
using
model_to_mesh
.
model = None
gmsh.initialize(sys.argv)
if MPI.COMM_WORLD.rank == 0:
model = generate_mesh_wire(
radius_wire,
radius_scatt,
l_dom,
l_pml,
in_wire_size,
on_wire_size,
scatt_size,
pml_size,
au_tag,
bkg_tag,
scatt_tag,
pml_tag,
)
model = MPI.COMM_WORLD.bcast(model, root=0)
partitioner = dolfinx.cpp.mesh.create_cell_partitioner(dolfinx.mesh.GhostMode.shared_facet)
mesh_data = gmshio.model_to_mesh(model, MPI.COMM_WORLD, 0, gdim=2, partitioner=partitioner)
assert mesh_data.cell_tags is not None, "Cell tags are missing"
assert mesh_data.facet_tags is not None, "Facet tags are missing"
assert all(pg.dim == 2 for _, pg in mesh_data.physical_groups.items()), "Wrong phsyical group dim."
gmsh.finalize()
MPI.COMM_WORLD.barrier()
We visualize the mesh and subdomains with PyVista
tdim = mesh_data.mesh.topology.dim
if have_pyvista:
topology, cell_types, geometry = plot.vtk_mesh(mesh_data.mesh, 2)
grid = pyvista.UnstructuredGrid(topology, cell_types, geometry)
plotter = pyvista.Plotter()
num_local_cells = mesh_data.mesh.topology.index_map(tdim).size_local
grid.cell_data["Marker"] = mesh_data.cell_tags.values[
mesh_data.cell_tags.indices < num_local_cells
]
grid.set_active_scalars("Marker")
plotter.add_mesh(grid, show_edges=True)
plotter.view_xy()
if not pyvista.OFF_SCREEN:
plotter.show(interactive=True)
else:
pyvista.start_xvfb()
figure = plotter.screenshot("wire_mesh_pml.png", window_size=[800, 800])
We observe five different subdomains: one for the gold wire
(au_tag
), one for the background medium (bkg_tag
), one for the PML
corners (pml_tag
), one for the PML rectangles along \(x\) (pml_tag + 1
), and one for the PML rectangles along \(y\) (pml_tag + 2
). These
different PML regions have different coordinate transformation, as
specified here below:
Now we define some other problem specific parameters:
wl0 = 0.4 # Wavelength of the background field
n_bkg = 1 # Background refractive index
eps_bkg = n_bkg**2 # Background relative permittivity
k0 = 2 * np.pi / wl0 # Wavevector of the background field
theta = 0 # Angle of incidence of the background field
We use a degree 3 Nedelec (first kind) element to represent the electric field:
degree = 3
curl_el = element("N1curl", mesh_data.mesh.basix_cell(), degree, dtype=default_real_type)
V = fem.functionspace(mesh_data.mesh, curl_el)
Next, we interpolate \(\mathbf{E}_b\) into the function space \(V\), define our trial and test function, and the integration domains:
Eb = fem.Function(V)
f = partial(background_field, theta, n_bkg, k0)
Eb.interpolate(f)
# Definition of Trial and Test functions
Es = ufl.TrialFunction(V)
v = ufl.TestFunction(V)
# Definition of 3d fields
Es_3d = ufl.as_vector((Es[0], Es[1], 0))
v_3d = ufl.as_vector((v[0], v[1], 0))
# Measures for subdomains
dx = ufl.Measure("dx", mesh_data.mesh, subdomain_data=mesh_data.cell_tags)
dDom = dx((au_tag, bkg_tag))
dPml_xy = dx(pml_tag)
dPml_x = dx(pml_tag + 1)
dPml_y = dx(pml_tag + 2)
Let’s now define the relative permittivity \(\varepsilon_m\) of the gold wire at \(400nm\) (data taken from Olmon et al. 2012 , and for a quick reference have a look at refractiveindex.info):
# Definition of relative permittivity for Au @400nm
eps_au = -1.0782 + 1j * 5.8089
We can now define a space function for the permittivity \(\varepsilon\) that takes the value \(\varepsilon_m\) for cells inside the wire, while it takes the value of the background permittivity \(\varepsilon_b\) in the background region:
D = fem.functionspace(mesh_data.mesh, ("DG", 0))
eps = fem.Function(D)
au_cells = mesh_data.cell_tags.find(au_tag)
bkg_cells = mesh_data.cell_tags.find(bkg_tag)
eps.x.array[au_cells] = np.full_like(au_cells, eps_au, dtype=eps.x.array.dtype)
eps.x.array[bkg_cells] = np.full_like(bkg_cells, eps_bkg, dtype=eps.x.array.dtype)
eps.x.scatter_forward()
Now we need to define our weak form in DOLFINx. Let’s write the PML weak form first. As a first step, we can define our new complex coordinates as:
x = ufl.SpatialCoordinate(mesh_data.mesh)
alpha = 1
# PML corners
xy_pml = ufl.as_vector(
(pml_coordinates(x[0], alpha, k0, l_dom, l_pml), pml_coordinates(x[1], alpha, k0, l_dom, l_pml))
)
# PML rectangles along x
x_pml = ufl.as_vector((pml_coordinates(x[0], alpha, k0, l_dom, l_pml), x[1]))
# PML rectangles along y
y_pml = ufl.as_vector((x[0], pml_coordinates(x[1], alpha, k0, l_dom, l_pml)))
We can then express this coordinate systems as a material transformation within the PML region. In other words, the PML region can be interpreted as a material having, in general, anisotropic, inhomogeneous and complex permittivity \(\boldsymbol{\varepsilon}_{pml}\) and permeability \(\boldsymbol{\mu}_{pml}\). To do this, we need to calculate the Jacobian of the coordinate transformation:
Then, our \(\boldsymbol{\varepsilon}_{pml}\) and \(\boldsymbol{\mu}_{pml}\) can be calculated with the following formula, from Ward & Pendry, 1996:
with \(A^{-1}=\operatorname{det}(\mathbf{J})\).
We use ufl.grad
to calculate the Jacobian of our coordinate
transformation for the different PML regions, and then we can
implement this Jacobian for calculating
\(\boldsymbol{\varepsilon}_{pml}\) and \(\boldsymbol{\mu}_{pml}\). The
here below function named create_eps_mu()
serves this purpose:
def create_eps_mu(
pml: ufl.tensors.ListTensor,
eps_bkg: float | ufl.tensors.ListTensor,
mu_bkg: float | ufl.tensors.ListTensor,
) -> tuple[ufl.tensors.ComponentTensor, ufl.tensors.ComponentTensor]:
J = ufl.grad(pml)
# Transform the 2x2 Jacobian into a 3x3 matrix.
J = ufl.as_matrix(((J[0, 0], 0, 0), (0, J[1, 1], 0), (0, 0, 1)))
A = ufl.inv(J)
eps_pml = ufl.det(J) * A * eps_bkg * ufl.transpose(A)
mu_pml = ufl.det(J) * A * mu_bkg * ufl.transpose(A)
return eps_pml, mu_pml
eps_x, mu_x = create_eps_mu(x_pml, eps_bkg, 1)
eps_y, mu_y = create_eps_mu(y_pml, eps_bkg, 1)
eps_xy, mu_xy = create_eps_mu(xy_pml, eps_bkg, 1)
The final weak form in the PML region is:
while in the rest of the domain is:
Let’s solve this equation in DOLFINx:
# Definition of the weak form
F = (
-ufl.inner(curl_2d(Es), curl_2d(v)) * dDom
+ eps * (k0**2) * ufl.inner(Es, v) * dDom
+ (k0**2) * (eps - eps_bkg) * ufl.inner(Eb, v) * dDom
- ufl.inner(ufl.inv(mu_x) * curl_2d(Es), curl_2d(v)) * dPml_x
- ufl.inner(ufl.inv(mu_y) * curl_2d(Es), curl_2d(v)) * dPml_y
- ufl.inner(ufl.inv(mu_xy) * curl_2d(Es), curl_2d(v)) * dPml_xy
+ (k0**2) * ufl.inner(eps_x * Es_3d, v_3d) * dPml_x
+ (k0**2) * ufl.inner(eps_y * Es_3d, v_3d) * dPml_y
+ (k0**2) * ufl.inner(eps_xy * Es_3d, v_3d) * dPml_xy
)
a, L = ufl.lhs(F), ufl.rhs(F)
# For factorisation prefer MUMPS, then superlu_dist, then default
sys = PETSc.Sys() # type: ignore
use_superlu = PETSc.IntType == np.int64
if sys.hasExternalPackage("mumps") and not use_superlu: # type: ignore
mat_factor_backend = "mumps"
elif sys.hasExternalPackage("superlu_dist"): # type: ignore
mat_factor_backend = "superlu_dist"
else:
if mesh_data.mesh.comm > 1:
raise RuntimeError("This demo requires a parallel LU solver.")
else:
mat_factor_backend = "petsc"
problem = LinearProblem(
a,
L,
bcs=[],
petsc_options_prefix="demo_pml_",
petsc_options={
"ksp_type": "preonly",
"pc_type": "lu",
"pc_factor_mat_solver_type": mat_factor_backend,
"ksp_error_if_not_converged": True,
},
)
Esh = problem.solve()
assert isinstance(Esh, fem.Function)
Let’s now save the solution in a bp
-file. In order to do so, we need
to interpolate our solution discretized with Nedelec elements into a
compatible discontinuous Lagrange space.
gdim = mesh_data.mesh.geometry.dim
V_dg = fem.functionspace(mesh_data.mesh, ("DG", degree, (gdim,)))
Esh_dg = fem.Function(V_dg)
Esh_dg.interpolate(Esh)
with VTXWriter(mesh_data.mesh.comm, "Esh.bp", Esh_dg) as vtx:
vtx.write(0.0)
For more information about saving and visualizing vector fields discretized with Nedelec elements, check this DOLFINx demo.
if have_pyvista:
V_cells, V_types, V_x = plot.vtk_mesh(V_dg)
V_grid = pyvista.UnstructuredGrid(V_cells, V_types, V_x)
Esh_values = np.zeros((V_x.shape[0], 3), dtype=np.float64)
Esh_values[:, :tdim] = Esh_dg.x.array.reshape(V_x.shape[0], tdim).real
V_grid.point_data["u"] = Esh_values
plotter = pyvista.Plotter()
plotter.add_text("magnitude", font_size=12, color="black")
plotter.add_mesh(V_grid.copy(), show_edges=True)
plotter.view_xy()
plotter.link_views()
if not pyvista.OFF_SCREEN:
plotter.show()
else:
pyvista.start_xvfb()
plotter.screenshot("Esh.png", window_size=[800, 800])
Next we can calculate the total electric field \(\mathbf{E}=\mathbf{E}_s+\mathbf{E}_b\) and save it:
E = fem.Function(V)
E.x.array[:] = Eb.x.array[:] + Esh.x.array[:]
E_dg = fem.Function(V_dg)
E_dg.interpolate(E)
with VTXWriter(mesh_data.mesh.comm, "E.bp", E_dg) as vtx:
vtx.write(0.0)
Post-processing
To validate the formulation we calculate the absorption, scattering
and extinction efficiencies, which are quantities that define how much
light is absorbed and scattered by the wire. First of all, we
calculate the analytical efficiencies with the
calculate_analytical_efficiencies
function
q_abs_analyt, q_sca_analyt, q_ext_analyt = calculate_analytical_efficiencies(
eps_au, n_bkg, wl0, radius_wire
)
We calculate the numerical efficiencies in the same way as done in
demo_scattering_boundary_conditions.py
, with the only difference
that now the scattering efficiency needs to be calculated over an
inner facet, and therefore it requires a slightly different approach:
Z0 = np.sqrt(mu_0 / epsilon_0) # Vacuum impedance
Hsh_3d = -1j * curl_2d(Esh) / (Z0 * k0 * n_bkg) # Magnetic field H
Esh_3d = ufl.as_vector((Esh[0], Esh[1], 0))
E_3d = ufl.as_vector((E[0], E[1], 0))
# Intensity of the electromagnetic fields I0 = 0.5*E0**2/Z0
# E0 = np.sqrt(ax**2 + ay**2) = 1, see background_electric_field
I0 = 0.5 / Z0
gcs = 2 * radius_wire # Geometrical cross section of the wire
n = ufl.FacetNormal(mesh_data.mesh)
n_3d = ufl.as_vector((n[0], n[1], 0))
# Create a marker for the integration boundary for the scattering
# efficiency
marker = fem.Function(D)
scatt_facets = mesh_data.facet_tags.find(scatt_tag)
incident_cells = mesh.compute_incident_entities(
mesh_data.mesh.topology, scatt_facets, tdim - 1, tdim
)
mesh_data.mesh.topology.create_connectivity(tdim, tdim)
midpoints = mesh.compute_midpoints(mesh_data.mesh, tdim, incident_cells)
inner_cells = incident_cells[(midpoints[:, 0] ** 2 + midpoints[:, 1] ** 2) < (radius_scatt) ** 2]
marker.x.array[inner_cells] = 1
# Quantities for the calculation of efficiencies
P = 0.5 * ufl.inner(ufl.cross(Esh_3d, ufl.conj(Hsh_3d)), n_3d) * marker
Q = 0.5 * eps_au.imag * k0 * (ufl.inner(E_3d, E_3d)) / (Z0 * n_bkg)
# Normalized absorption efficiency
dAu = dx(au_tag) # Define integration domain for the wire
q_abs_fenics_proc = (fem.assemble_scalar(fem.form(Q * dAu)) / (gcs * I0)).real
# Sum results from all MPI processes
q_abs_fenics = mesh_data.mesh.comm.allreduce(q_abs_fenics_proc, op=MPI.SUM)
# Normalized scattering efficiency
dS = ufl.Measure("dS", mesh_data.mesh, subdomain_data=mesh_data.facet_tags)
q_sca_fenics_proc = (
fem.assemble_scalar(fem.form((P("+") + P("-")) * dS(scatt_tag))) / (gcs * I0)
).real
# Sum results from all MPI processes
q_sca_fenics = mesh_data.mesh.comm.allreduce(q_sca_fenics_proc, op=MPI.SUM)
# Extinction efficiency
q_ext_fenics = q_abs_fenics + q_sca_fenics
# Error calculation
err_abs = np.abs(q_abs_analyt - q_abs_fenics) / q_abs_analyt
err_sca = np.abs(q_sca_analyt - q_sca_fenics) / q_sca_analyt
err_ext = np.abs(q_ext_analyt - q_ext_fenics) / q_ext_analyt
PETSc.Sys.Print(f"The analytical absorption efficiency is {q_abs_analyt}")
PETSc.Sys.Print(f"The numerical absorption efficiency is {q_abs_fenics}")
PETSc.Sys.Print(f"The error is {err_abs * 100}%")
PETSc.Sys.Print()
PETSc.Sys.Print(f"The analytical scattering efficiency is {q_sca_analyt}")
PETSc.Sys.Print(f"The numerical scattering efficiency is {q_sca_fenics}")
PETSc.Sys.Print(f"The error is {err_sca * 100}%")
PETSc.Sys.Print()
PETSc.Sys.Print(f"The analytical extinction efficiency is {q_ext_analyt}")
PETSc.Sys.Print(f"The numerical extinction efficiency is {q_ext_fenics}")
PETSc.Sys.Print(f"The error is {err_ext * 100}%")
# Check if errors are smaller than 1%
assert err_abs < 0.01, "Error in absorption efficiency is too large"
# assert err_sca < 0.01
assert err_ext < 0.01, "Error in extinction efficiency is too large"