Divergence conforming discontinuous Galerkin method for the Navier–Stokes equations
This demo (demo_navier-stokes.py
) illustrates how to
implement a divergence conforming discontinuous Galerkin method for
the Navier-Stokes equations in FEniCSx. The method conserves mass
exactly and uses upwinding. The formulation is based on a combination
of “A fully divergence-free finite element method for
magnetohydrodynamic equations” by Hiptmair et al., “A Note on
Discontinuous Galerkin Divergence-free Solutions of the Navier-Stokes
Equations” by Cockburn et al, and “On the Divergence Constraint in
Mixed Finite Element Methods for Incompressible Flows” by John et al.
Governing equations
We consider the incompressible Navier-Stokes equations in a domain \(\Omega \subset \mathbb{R}^d\), \(d \in \{2, 3\}\), and time interval \((0, \infty)\), given by
where \(u: \Omega_t \to \mathbb{R}^d\) is the velocity field, \(p: \Omega_t \to \mathbb{R}\) is the pressure field, \(f: \Omega_t \to \mathbb{R}^d\) is a prescribed force, \(\nu \in \mathbb{R}^+\) is the kinematic viscosity, and \(\Omega_t := \Omega \times (0, \infty)\).
The problem is supplemented with the initial condition
and boundary condition
where \(u_0: \Omega \to \mathbb{R}^d\) is a prescribed initial velocity field which satisfies the divergence free condition. The pressure field is only determined up to a constant, so we seek the unique pressure field satisfying
Discrete problem
We begin by introducing the function spaces
The local spaces \(V_h(K)\) and \(Q_h(K)\) should satisfy
in order for mass to be conserved exactly. Suitable choices on affine simplex cells include
or
Let two cells \(K^+\) and \(K^-\) share a facet \(F\). The trace of a piecewise smooth vector valued function \(\phi\) on F taken approaching from inside \(K^+\) (resp. \(K^-\)) is denoted \(\phi^{+}\) (resp. \(\phi^-\)). We now introduce the average \(\renewcommand{\avg}[1]{\left\{\!\!\left\{#1\right\}\!\!\right\}}\)
and jump \(\renewcommand{\jump}[1]{[\![ #1 ]\!]}\)
operators, where \(n\) denotes the outward unit normal to \(\partial K\). Finally, let the upwind flux of \(\phi\) with respect to a vector field \(\psi\) be defined as
where \(\Gamma^\psi = \left\{x \in \Gamma; \; \psi(x) \cdot n(x) < 0\right\}\).
The semi-discrete version problem (in dimensionless form) is: find \((u_h, p_h) \in V_h^{u_D} \times Q_h\) such that
where \(\renewcommand{\sumK}[0]{\sum_{K \in \mathcal{T}_h}}\) \(\renewcommand{\sumF}[0]{\sum_{F \in \mathcal{F}_h}}\)
Implementation
We begin by importing the required modules and functions
import numpy as np
from dolfinx import default_real_type, fem, io, mesh
from dolfinx.fem.petsc import assemble_matrix_block, assemble_vector_block
from ufl import (CellDiameter, FacetNormal, TestFunction, TrialFunction, avg,
conditional, div, dot, dS, ds, dx, grad, gt, inner, outer)
from mpi4py import MPI
from petsc4py import PETSc
if np.issubdtype(PETSc.ScalarType, np.complexfloating): # type: ignore
print("Demo should only be executed with DOLFINx real mode")
exit(0)
We also define some helper functions that will be used later
def norm_L2(comm, v):
"""Compute the L2(Ω)-norm of v"""
return np.sqrt(comm.allreduce(fem.assemble_scalar(fem.form(inner(v, v) * dx)), op=MPI.SUM))
def domain_average(msh, v):
"""Compute the average of a function over the domain"""
vol = msh.comm.allreduce(fem.assemble_scalar(fem.form(fem.Constant(msh, default_real_type(1.0)) * dx)), op=MPI.SUM)
return (1 / vol) * msh.comm.allreduce(fem.assemble_scalar(fem.form(v * dx)), op=MPI.SUM)
def u_e_expr(x):
"""Expression for the exact velocity solution to Kovasznay flow"""
return np.vstack((1 - np.exp(
(Re / 2 - np.sqrt(Re**2 / 4 + 4 * np.pi**2)) * x[0]) * np.cos(2 * np.pi * x[1]),
(Re / 2 - np.sqrt(Re**2 / 4 + 4 * np.pi**2)) / (2 * np.pi) * np.exp(
(Re / 2 - np.sqrt(Re**2 / 4 + 4 * np.pi**2)) * x[0])
* np.sin(2 * np.pi * x[1])))
def p_e_expr(x):
"""Expression for the exact pressure solution to Kovasznay flow"""
return (1 / 2) * (1 - np.exp(2 * (Re / 2 - np.sqrt(Re**2 / 4 + 4 * np.pi**2)) * x[0]))
def f_expr(x):
"""Expression for the applied force"""
return np.vstack((np.zeros_like(x[0]), np.zeros_like(x[0])))
def boundary_marker(x):
return np.isclose(x[0], 0.0) | np.isclose(x[0], 1.0) | np.isclose(x[1], 0.0) | np.isclose(x[1], 1.0)
We define some simulation parameters
n = 16
num_time_steps = 25
t_end = 10
Re = 25 # Reynolds Number
k = 1 # Polynomial degree
Next, we create a mesh and the required functions spaces over it. Since the velocity uses an \(H(\textnormal{div})\)-conforming function space, we also create a vector valued discontinuous Lagrange space to interpolate into for artifact free visualisation.
msh = mesh.create_unit_square(MPI.COMM_WORLD, n, n)
# Function spaces for the velocity and for the pressure
V = fem.functionspace(msh, ("Raviart-Thomas", k + 1))
Q = fem.functionspace(msh, ("Discontinuous Lagrange", k))
# Funcion space for visualising the velocity field
gdim = msh.geometry.dim
W = fem.functionspace(msh, ("Discontinuous Lagrange", k + 1, (gdim,)))
# Define trial and test functions
u, v = TrialFunction(V), TestFunction(V)
p, q = TrialFunction(Q), TestFunction(Q)
delta_t = fem.Constant(msh, default_real_type(t_end / num_time_steps))
alpha = fem.Constant(msh, default_real_type(6.0 * k**2))
h = CellDiameter(msh)
n = FacetNormal(msh)
def jump(phi, n):
return outer(phi("+"), n("+")) + outer(phi("-"), n("-"))
We solve the Stokes problem for the initial condition, omitting the convective term:
a_00 = (1.0 / Re) * (inner(grad(u), grad(v)) * dx
- inner(avg(grad(u)), jump(v, n)) * dS
- inner(jump(u, n), avg(grad(v))) * dS
+ (alpha / avg(h)) * inner(jump(u, n), jump(v, n)) * dS
- inner(grad(u), outer(v, n)) * ds
- inner(outer(u, n), grad(v)) * ds
+ (alpha / h) * inner(outer(u, n), outer(v, n)) * ds)
a_01 = - inner(p, div(v)) * dx
a_10 = - inner(div(u), q) * dx
a = fem.form([[a_00, a_01],
[a_10, None]])
f = fem.Function(W)
u_D = fem.Function(V)
u_D.interpolate(u_e_expr)
L_0 = inner(f, v) * dx + (1 / Re) * (- inner(outer(u_D, n), grad(v)) * ds
+ (alpha / h) * inner(outer(u_D, n), outer(v, n)) * ds)
L_1 = inner(fem.Constant(msh, default_real_type(0.0)), q) * dx
L = fem.form([L_0, L_1])
# Boundary conditions
boundary_facets = mesh.locate_entities_boundary(msh, msh.topology.dim - 1, boundary_marker)
boundary_vel_dofs = fem.locate_dofs_topological(V, msh.topology.dim - 1, boundary_facets)
bc_u = fem.dirichletbc(u_D, boundary_vel_dofs)
bcs = [bc_u]
# Assemble Stokes problem
A = assemble_matrix_block(a, bcs=bcs)
A.assemble()
b = assemble_vector_block(L, a, bcs=bcs)
# Create and configure solver
ksp = PETSc.KSP().create(msh.comm) # type: ignore
ksp.setOperators(A)
ksp.setType("preonly")
ksp.getPC().setType("lu")
ksp.getPC().setFactorSolverType("mumps")
opts = PETSc.Options() # type: ignore
opts["mat_mumps_icntl_14"] = 80 # Increase MUMPS working memory
opts["mat_mumps_icntl_24"] = 1 # Option to support solving a singular matrix (pressure nullspace)
opts["mat_mumps_icntl_25"] = 0 # Option to support solving a singular matrix (pressure nullspace)
opts["ksp_error_if_not_converged"] = 1
ksp.setFromOptions()
# Solve Stokes for initial condition
x = A.createVecRight()
try:
ksp.solve(b, x)
except PETSc.Error as e: # type: ignore
if e.ierr == 92:
print("The required PETSc solver/preconditioner is not available. Exiting.")
print(e)
exit(0)
else:
raise e
# Split the solution
u_h = fem.Function(V)
p_h = fem.Function(Q)
p_h.name = "p"
offset = V.dofmap.index_map.size_local * V.dofmap.index_map_bs
u_h.x.array[:offset] = x.array_r[:offset]
u_h.x.scatter_forward()
p_h.x.array[:(len(x.array_r) - offset)] = x.array_r[offset:]
p_h.x.scatter_forward()
# Subtract the average of the pressure since it is only determined up to
# a constant
p_h.x.array[:] -= domain_average(msh, p_h)
u_vis = fem.Function(W)
u_vis.name = "u"
u_vis.interpolate(u_h)
# Write initial condition to file
t = 0.0
try:
u_file = io.VTXWriter(msh.comm, "u.bp", [u_vis._cpp_object])
p_file = io.VTXWriter(msh.comm, "p.bp", [p_h._cpp_object])
u_file.write(t)
p_file.write(t)
except AttributeError:
print("File output requires ADIOS2.")
# Create function to store solution and previous time step
u_n = fem.Function(V)
u_n.x.array[:] = u_h.x.array
Now we add the time stepping and convective terms
lmbda = conditional(gt(dot(u_n, n), 0), 1, 0)
u_uw = lmbda("+") * u("+") + lmbda("-") * u("-")
a_00 += inner(u / delta_t, v) * dx - \
inner(u, div(outer(v, u_n))) * dx + \
inner((dot(u_n, n))("+") * u_uw, v("+")) * dS + \
inner((dot(u_n, n))("-") * u_uw, v("-")) * dS + \
inner(dot(u_n, n) * lmbda * u, v) * ds
a = fem.form([[a_00, a_01],
[a_10, None]])
L_0 += inner(u_n / delta_t, v) * dx - inner(dot(u_n, n) * (1 - lmbda) * u_D, v) * ds
L = fem.form([L_0, L_1])
# Time stepping loop
for n in range(num_time_steps):
t += delta_t.value
A.zeroEntries()
fem.petsc.assemble_matrix_block(A, a, bcs=bcs) # type: ignore
A.assemble()
with b.localForm() as b_loc:
b_loc.set(0)
fem.petsc.assemble_vector_block(b, L, a, bcs=bcs) # type: ignore
# Compute solution
ksp.solve(b, x)
u_h.x.array[:offset] = x.array_r[:offset]
u_h.x.scatter_forward()
p_h.x.array[:(len(x.array_r) - offset)] = x.array_r[offset:]
p_h.x.scatter_forward()
p_h.x.array[:] -= domain_average(msh, p_h)
u_vis.interpolate(u_h)
# Write to file
try:
u_file.write(t)
p_file.write(t)
except NameError:
pass
# Update u_n
u_n.x.array[:] = u_h.x.array
try:
u_file.close()
p_file.close()
except NameError:
pass
Now we compare the computed solution to the exact solution
# Function spaces for exact velocity and pressure
V_e = fem.functionspace(msh, ("Lagrange", k + 3, (gdim,)))
Q_e = fem.functionspace(msh, ("Lagrange", k + 2))
u_e = fem.Function(V_e)
u_e.interpolate(u_e_expr)
p_e = fem.Function(Q_e)
p_e.interpolate(p_e_expr)
# Compute errors
e_u = norm_L2(msh.comm, u_h - u_e)
e_div_u = norm_L2(msh.comm, div(u_h))
# This scheme conserves mass exactly, so check this
assert np.isclose(e_div_u, 0.0, atol=float(1.0e5 * np.finfo(default_real_type).eps))
p_e_avg = domain_average(msh, p_e)
e_p = norm_L2(msh.comm, p_h - (p_e - p_e_avg))
if msh.comm.rank == 0:
print(f"e_u = {e_u}")
print(f"e_div_u = {e_div_u}")
print(f"e_p = {e_p}")