Cahn-Hilliard equation
This example demonstrates the solution of the Cahn-Hilliard equation, a nonlinear, time-dependent fourth-order PDE.
A mixed finite element method
The \(\theta\)-method for time-dependent equations
Automatic linearisation
Use of the class
NonlinearProblem
The built-in Newton solver (
NewtonSolver
)Form compiler options
Interpolation of functions
Visualisation of a running simulation with PyVista
This demo is implemented in demo_cahn-hilliard.py
.
Equation and problem definition
The Cahn-Hilliard equation is a parabolic equation and is typically used to model phase separation in binary mixtures. It involves first-order time derivatives, and second- and fourth-order spatial derivatives. The equation reads:
where \(c\) is the unknown field, the function \(f\) is usually non-convex in \(c\) (a fourth-order polynomial is commonly used), \(n\) is the outward directed boundary normal, and \(M\) is a scalar parameter.
Operator split form
The Cahn-Hilliard equation is a fourth-order equation, so casting it in a weak form would result in the presence of second-order spatial derivatives, and the problem could not be solved using a standard Lagrange finite element basis. A solution is to rephrase the problem as two coupled second-order equations:
The unknown fields are now \(c\) and \(\mu\). The weak (variational) form of the problem reads: find \((c, \mu) \in V \times V\) such that
Time discretisation
Before being able to solve this problem, the time derivative must be dealt with. Apply the \(\theta\)-method to the mixed weak form of the equation:
where \(dt = t_{n+1} - t_{n}\) and \(\mu_{n+\theta} = (1-\theta) \mu_{n} + \theta \mu_{n+1}\). The task is: given \(c_{n}\) and \(\mu_{n}\), solve the above equation to find \(c_{n+1}\) and \(\mu_{n+1}\).
Demo parameters
The following domains, functions and time stepping parameters are used in this demo:
\(\Omega = (0, 1) \times (0, 1)\) (unit square)
\(f = 100 c^{2} (1-c)^{2}\)
\(\lambda = 1 \times 10^{-2}\)
\(M = 1\)
\(dt = 5 \times 10^{-6}\)
\(\theta = 0.5\)
Implementation
This demo is implemented in the demo_cahn-hilliard.py
file.
import os
import numpy as np
import ufl
from basix.ufl import element, mixed_element
from dolfinx import default_real_type, log, plot
from dolfinx.fem import Function, functionspace
from dolfinx.fem.petsc import NonlinearProblem
from dolfinx.io import XDMFFile
from dolfinx.mesh import CellType, create_unit_square
from dolfinx.nls.petsc import NewtonSolver
from ufl import dx, grad, inner
from mpi4py import MPI
from petsc4py import PETSc
try:
import pyvista as pv
import pyvistaqt as pvqt
have_pyvista = True
if pv.OFF_SCREEN:
pv.start_xvfb(wait=0.5)
except ModuleNotFoundError:
print("pyvista and pyvistaqt are required to visualise the solution")
have_pyvista = False
# Save all logging to file
log.set_output_file("log.txt")
Next, various model parameters are defined:
lmbda = 1.0e-02 # surface parameter
dt = 5.0e-06 # time step
theta = 0.5 # time stepping family, e.g. theta=1 -> backward Euler, theta=0.5 -> Crank-Nicholson
A unit square mesh with 96 cells edges in each direction is created,
and on this mesh a
FunctionSpaceBase
ME
is built
using a pair of linear Lagrange elements.
msh = create_unit_square(MPI.COMM_WORLD, 96, 96, CellType.triangle)
P1 = element("Lagrange", msh.basix_cell(), 1)
ME = functionspace(msh, mixed_element([P1, P1]))
Trial and test functions of the space ME
are now defined:
q, v = ufl.TestFunctions(ME)
For the test functions, TestFunctions
(note the ‘s’ at the end) is used to
define the scalar test functions q
and v
. Some mixed objects of
the Function
class on ME
are defined to represent \(u = (c_{n+1}, \mu_{n+1})\) and \(u0 = (c_{n},
\mu_{n})\), and these are then split into sub-functions:
u = Function(ME) # current solution
u0 = Function(ME) # solution from previous converged step
# Split mixed functions
c, mu = ufl.split(u)
c0, mu0 = ufl.split(u0)
The line c, mu = ufl.split(u)
permits direct access to the
components of a mixed function. Note that c
and mu
are references
for components of u
, and not copies.
The initial conditions are interpolated into a finite element space:
# Zero u
u.x.array[:] = 0.0
# Interpolate initial condition
u.sub(0).interpolate(lambda x: 0.63 + 0.02 * (0.5 - np.random.rand(x.shape[1])))
u.x.scatter_forward()
The first line creates an object of type InitialConditions
. The
following two lines make u
and u0
interpolants of u_init
(since
u
and u0
are finite element functions, they may not be able to
represent a given function exactly, but the function can be
approximated by interpolating it in a finite element space).
The chemical potential \(df/dc\) is computed using UFL automatic differentiation:
# Compute the chemical potential df/dc
c = ufl.variable(c)
f = 100 * c**2 * (1 - c)**2
dfdc = ufl.diff(f, c)
The first line declares that c
is a variable that some function can
be differentiated with respect to. The next line is the function \(f\)
defined in the problem statement, and the third line performs the
differentiation of f
with respect to the variable c
.
It is convenient to introduce an expression for \(\mu_{n+\theta}\):
# mu_(n+theta)
mu_mid = (1.0 - theta) * mu0 + theta * mu
which is then used in the definition of the variational forms:
# Weak statement of the equations
F0 = inner(c, q) * dx - inner(c0, q) * dx + dt * inner(grad(mu_mid), grad(q)) * dx
F1 = inner(mu, v) * dx - inner(dfdc, v) * dx - lmbda * inner(grad(c), grad(v)) * dx
F = F0 + F1
This is a statement of the time-discrete equations presented as part of the problem statement, using UFL syntax.
The DOLFINx Newton solver requires a
NonlinearProblem
object to
solve a system of nonlinear equations
# Create nonlinear problem and Newton solver
problem = NonlinearProblem(F, u)
solver = NewtonSolver(MPI.COMM_WORLD, problem)
solver.convergence_criterion = "incremental"
solver.rtol = np.sqrt(np.finfo(default_real_type).eps) * 1e-2
# We can customize the linear solver used inside the NewtonSolver by
# modifying the PETSc options
ksp = solver.krylov_solver
opts = PETSc.Options() # type: ignore
option_prefix = ksp.getOptionsPrefix()
opts[f"{option_prefix}ksp_type"] = "preonly"
opts[f"{option_prefix}pc_type"] = "lu"
ksp.setFromOptions()
The setting of convergence_criterion
to "incremental"
specifies
that the Newton solver should compute a norm of the solution increment
to check for convergence (the other possibility is to use
"residual"
, or to provide a user-defined check). The tolerance for
convergence is specified by rtol
.
To run the solver and save the output to a VTK file for later visualization, the solver is advanced in time from \(t_{n}\) to \(t_{n+1}\) until a terminal time \(T\) is reached:
# Output file
file = XDMFFile(MPI.COMM_WORLD, "demo_ch/output.xdmf", "w")
file.write_mesh(msh)
# Step in time
t = 0.0
# Reduce run time if on test (CI) server
if "CI" in os.environ.keys() or "GITHUB_ACTIONS" in os.environ.keys():
T = 3 * dt
else:
T = 50 * dt
# Get the sub-space for c and the corresponding dofs in the mixed space
# vector
V0, dofs = ME.sub(0).collapse()
# Prepare viewer for plotting the solution during the computation
if have_pyvista:
# Create a VTK 'mesh' with 'nodes' at the function dofs
topology, cell_types, x = plot.vtk_mesh(V0)
grid = pv.UnstructuredGrid(topology, cell_types, x)
# Set output data
grid.point_data["c"] = u.x.array[dofs].real
grid.set_active_scalars("c")
p = pvqt.BackgroundPlotter(title="concentration", auto_update=True)
p.add_mesh(grid, clim=[0, 1])
p.view_xy(True)
p.add_text(f"time: {t}", font_size=12, name="timelabel")
c = u.sub(0)
u0.x.array[:] = u.x.array
while (t < T):
t += dt
r = solver.solve(u)
print(f"Step {int(t/dt)}: num iterations: {r[0]}")
u0.x.array[:] = u.x.array
file.write_function(c, t)
# Update the plot window
if have_pyvista:
p.add_text(f"time: {t:.2e}", font_size=12, name="timelabel")
grid.point_data["c"] = u.x.array[dofs].real
p.app.processEvents()
file.close()
# Update ghost entries and plot
if have_pyvista:
u.x.scatter_forward()
grid.point_data["c"] = u.x.array[dofs].real
screenshot = None
if pv.OFF_SCREEN:
screenshot = "c.png"
pv.plot(grid, show_edges=True, screenshot=screenshot)