DOLFINx 0.10.0.0
DOLFINx C++ interface
Loading...
Searching...
No Matches
FiniteElement< T > Class Template Reference

Model of a finite element. More...

#include <FiniteElement.h>

Public Types

using geometry_type = T
 Geometry type of the Mesh that the FunctionSpace is defined on.
 

Public Member Functions

 FiniteElement (const basix::FiniteElement< geometry_type > &element, std::optional< std::vector< std::size_t > > value_shape=std::nullopt, bool symmetric=false)
 Create a finite element from a Basix finite element.
 
 FiniteElement (std::vector< BasixElementData< geometry_type > > elements)
 Create a mixed finite element from Basix finite elements.
 
 FiniteElement (const std::vector< std::shared_ptr< const FiniteElement< geometry_type > > > &elements)
 Create a mixed finite element from a list of finite elements.
 
 FiniteElement (mesh::CellType cell_type, std::span< const geometry_type > points, std::array< std::size_t, 2 > pshape, std::vector< std::size_t > value_shape={}, bool symmetric=false)
 Create a quadrature element.
 
 FiniteElement (const FiniteElement &element)=delete
 Copy constructor.
 
 FiniteElement (FiniteElement &&element)=default
 Move constructor.
 
 ~FiniteElement ()=default
 Destructor.
 
FiniteElementoperator= (const FiniteElement &element)=delete
 Copy assignment.
 
FiniteElementoperator= (FiniteElement &&element)=default
 Move assignment.
 
bool operator== (const FiniteElement &e) const
 Check if two elements are equivalent.
 
bool operator!= (const FiniteElement &e) const
 Check if two elements are not equivalent.
 
mesh::CellType cell_type () const noexcept
 Cell shape that the element is defined on.
 
std::string signature () const noexcept
 String identifying the finite element.
 
int space_dimension () const noexcept
 Dimension of the finite element function space (the number of degrees-of-freedom for the element).
 
int block_size () const noexcept
 Block size of the finite element function space.
 
int value_size () const
 Value size of the finite element field.
 
std::span< const std::size_t > value_shape () const
 Value shape of the finite element field.
 
int reference_value_size () const
 Value size of the base (non-blocked) finite element field.
 
std::span< const std::size_t > reference_value_shape () const
 Value shape of the base (non-blocked) finite element field.
 
const std::vector< std::vector< std::vector< int > > > & entity_dofs () const noexcept
 Local DOFs associated with each sub-entity of the cell.
 
const std::vector< std::vector< std::vector< int > > > & entity_closure_dofs () const noexcept
 Local DOFs associated with the closure of each sub-entity of the cell.
 
bool symmetric () const
 Does the element represent a symmetric 2-tensor?
 
void tabulate (std::span< geometry_type > values, std::span< const geometry_type > X, std::array< std::size_t, 2 > shape, int order) const
 Evaluate derivatives of the basis functions up to given order at points in the reference cell.
 
std::pair< std::vector< geometry_type >, std::array< std::size_t, 4 > > tabulate (std::span< const geometry_type > X, std::array< std::size_t, 2 > shape, int order) const
 Evaluate all derivatives of the basis functions up to given order at given points in reference cell.
 
int num_sub_elements () const noexcept
 Number of sub elements (for a mixed or blocked element).
 
bool is_mixed () const noexcept
 Check if element is a mixed element.
 
const std::vector< std::shared_ptr< const FiniteElement< geometry_type > > > & sub_elements () const noexcept
 Get subelements (if any)
 
std::shared_ptr< const FiniteElement< geometry_type > > extract_sub_element (const std::vector< int > &component) const
 Extract sub finite element for component.
 
const basix::FiniteElement< geometry_type > & basix_element () const
 Return underlying Basix element (if it exists).
 
basix::maps::type map_type () const
 Get the map type used by the element.
 
bool interpolation_ident () const noexcept
 
bool map_ident () const noexcept
 
std::pair< std::vector< geometry_type >, std::array< std::size_t, 2 > > interpolation_points () const
 Points on the reference cell at which an expression needs to be evaluated in order to interpolate the expression in the finite element space.
 
std::pair< std::vector< geometry_type >, std::array< std::size_t, 2 > > interpolation_operator () const
 
std::pair< std::vector< geometry_type >, std::array< std::size_t, 2 > > create_interpolation_operator (const FiniteElement &from) const
 Create a matrix that maps degrees of freedom from one element to this element (interpolation).
 
bool needs_dof_transformations () const noexcept
 Check if DOF transformations are needed for this element.
 
bool needs_dof_permutations () const noexcept
 Check if DOF permutations are needed for this element.
 
template<typename U >
std::function< void(std::span< U >, std::span< const std::uint32_t >, std::int32_t, int)> dof_transformation_fn (doftransform ttype, bool scalar_element=false) const
 Return a function that applies a DOF transformation operator to some data (see T_apply()).
 
template<typename U >
std::function< void(std::span< U >, std::span< const std::uint32_t >, std::int32_t, int)> dof_transformation_right_fn (doftransform ttype, bool scalar_element=false) const
 Return a function that applies DOF transformation to some transposed data (see T_apply_right()).
 
template<typename U >
void T_apply (std::span< U > data, std::uint32_t cell_permutation, int n) const
 Transform basis functions from the reference element ordering and orientation to the globally consistent physical element ordering and orientation.
 
template<typename U >
void Tt_inv_apply (std::span< U > data, std::uint32_t cell_permutation, int n) const
 Apply the inverse transpose of the operator applied by T_apply().
 
template<typename U >
void Tt_apply (std::span< U > data, std::uint32_t cell_permutation, int n) const
 Apply the transpose of the operator applied by T_apply().
 
template<typename U >
void Tinv_apply (std::span< U > data, std::uint32_t cell_permutation, int n) const
 Apply the inverse of the operator applied by T_apply().
 
template<typename U >
void T_apply_right (std::span< U > data, std::uint32_t cell_permutation, int n) const
 Right(post)-apply the operator applied by T_apply().
 
template<typename U >
void Tinv_apply_right (std::span< U > data, std::uint32_t cell_permutation, int n) const
 Right(post)-apply the inverse of the operator applied by T_apply().
 
template<typename U >
void Tt_apply_right (std::span< U > data, std::uint32_t cell_permutation, int n) const
 Right(post)-apply the transpose of the operator applied by T_apply().
 
template<typename U >
void Tt_inv_apply_right (std::span< U > data, std::uint32_t cell_permutation, int n) const
 Right(post)-apply the transpose inverse of the operator applied by T_apply().
 
void permute (std::span< std::int32_t > doflist, std::uint32_t cell_permutation) const
 Permute indices associated with degree-of-freedoms on the reference element ordering to the globally consistent physical element degree-of-freedom ordering.
 
void permute_inv (std::span< std::int32_t > doflist, std::uint32_t cell_permutation) const
 Perform the inverse of the operation applied by permute().
 
std::function< void(std::span< std::int32_t >, std::uint32_t)> dof_permutation_fn (bool inverse=false, bool scalar_element=false) const
 Return a function that applies a degree-of-freedom permutation to some data.
 

Detailed Description

template<std::floating_point T>
class dolfinx::fem::FiniteElement< T >

Model of a finite element.

Provides the dof layout on a reference element, and various methods for evaluating and transforming the basis.

Constructor & Destructor Documentation

◆ FiniteElement() [1/4]

template<std::floating_point T>
FiniteElement ( const basix::FiniteElement< geometry_type > & element,
std::optional< std::vector< std::size_t > > value_shape = std::nullopt,
bool symmetric = false )

Create a finite element from a Basix finite element.

Parameters
[in]elementBasix finite element.
[in]value_shapeValue shape for blocked element, e.g. {3} for a vector in 3D or {2, 2} for a rank-2 tensor in 2D. Can only be set for blocked scalar element. For other elements and scalar elements it should be std::nullopt.
[in]symmetricIs the element a symmetric tensor? Should only set for 2nd-order tensor blocked elements.

◆ FiniteElement() [2/4]

template<std::floating_point T>
FiniteElement ( std::vector< BasixElementData< geometry_type > > elements)

Create a mixed finite element from Basix finite elements.

See FiniteElement(const std::vector<std::shared_ptr<const FiniteElement<geometry_type>>>&) for a discussion of mixed elements.

Parameters
[in]elementsList of (Basix finite element, block size, symmetric) tuples, one for each element in the mixed element.

◆ FiniteElement() [3/4]

template<std::floating_point T>
FiniteElement ( const std::vector< std::shared_ptr< const FiniteElement< geometry_type > > > & elements)

Create a mixed finite element from a list of finite elements.

This constructs a mixed element \(E_0 \times E_1 \times \ldots \times E_{n-1}\). The *i*th sub-element \(E_i\) can be accessed by extract_sub_element. Functions defined on mixed element spaces cannot be interpolated into directly. It is necessary to first extract a sub-Function (view), which can then be interpolated into.

A mixed element can be constructed from one element. In this case the FiniteElement behaves like a mixed element and cannot be interpolated into. The underlying element can be accessed using extract_sub_element.

Parameters
[in]elementsFinite elements to compose the mixed element from.

◆ FiniteElement() [4/4]

template<std::floating_point T>
FiniteElement ( mesh::CellType cell_type,
std::span< const geometry_type > points,
std::array< std::size_t, 2 > pshape,
std::vector< std::size_t > value_shape = {},
bool symmetric = false )

Create a quadrature element.

Parameters
[in]cell_typeCell type.
[in]pointsQuadrature points.
[in]pshapeShape of points array.
[in]value_shapeValue shape for the element.
[in]symmetricIs the element a symmetric tensor?

Member Function Documentation

◆ basix_element()

template<std::floating_point T>
const basix::FiniteElement< T > & basix_element ( ) const

Return underlying Basix element (if it exists).

Exceptions
Throwsa std::runtime_error is there no Basix element.

◆ block_size()

template<std::floating_point T>
int block_size ( ) const
noexcept

Block size of the finite element function space.

For non-blocked elements, this is always 1. For blocked elements, this is the number of DOFs collocated at each DOF point. For blocked elements the block size is equal to the value size, except for symmetric rank-2 tensor blocked elements. For a symmetric rank-2 tensor blocked element the block size is 3 in 2D and 6 in 3D.

Returns
Block size of the finite element space.

◆ create_interpolation_operator()

template<std::floating_point T>
std::pair< std::vector< T >, std::array< std::size_t, 2 > > create_interpolation_operator ( const FiniteElement< T > & from) const

Create a matrix that maps degrees of freedom from one element to this element (interpolation).

Parameters
[in]fromThe element to interpolate from.
Returns
Matrix operator that maps the from degrees-of-freedom to the degrees-of-freedom of this element. The (0) matrix data (row-major storage) and (1) the shape (num_dofs of this element, num_dofs of from) are returned.
Precondition
The two elements must use the same mapping between the reference and physical cells.
Note
Does not support mixed elements.

◆ dof_permutation_fn()

template<std::floating_point T>
std::function< void(std::span< std::int32_t >, std::uint32_t)> dof_permutation_fn ( bool inverse = false,
bool scalar_element = false ) const

Return a function that applies a degree-of-freedom permutation to some data.

The returned function can apply permute() to mixed-elements.

The signature of the returned function has three arguments:

  • [in,out] doflist The numbers of the DOFs, a span of length num_dofs
  • [in] cell_permutation Permutation data for the cell
  • [in] block_size The block_size of the input data
Parameters
[in]inverseIndicates if the inverse transformation should be returned.
[in]scalar_elementIndicates is the scalar transformations should be returned for a vector element.

◆ dof_transformation_fn()

template<std::floating_point T>
template<typename U >
std::function< void(std::span< U >, std::span< const std::uint32_t >, std::int32_t, int)> dof_transformation_fn ( doftransform ttype,
bool scalar_element = false ) const
inline

Return a function that applies a DOF transformation operator to some data (see T_apply()).

The transformation is applied from the left-hand side, i.e.

\[ u \leftarrow T u. \]

If the transformation for the (sub)element is a permutation only, the returned function will do change the ordering for the (sub)element as it is assumed that permutations are incorporated into the degree-of-freedom map.

See the documentation for T_apply() for a description of the transformation for a single element type. This function generates a function that can apply the transformation to a mixed element.

The signature of the returned function has four arguments:

  • [in,out] data The data to be transformed. This data is flattened with row-major layout, shape=(num_dofs, block_size)
  • [in] cell_info Permutation data for the cell. The size of this is num_cells. For elements where no transformations are required, an empty span can be passed in.
  • [in] cell The cell number.
  • [in] n The block_size of the input data.
Parameters
[in]ttypeThe transformation type. Typical usage is:
  • doftransform::standard Transforms basis function data from the reference element to the conforming 'physical' element, e.g. \(\phi = T \tilde{\phi}\).
  • doftransform::transpose Transforms degree-of-freedom data from the conforming (physical) ordering to the reference ordering, e.g. \(\tilde{u} = T^{T} u\).
  • doftransform::inverse: Transforms basis function data from the the conforming (physical) ordering to the reference ordering, e.g. \(\tilde{\phi} = T^{-1} \phi\).
  • doftransform::inverse_transpose: Transforms degree-of-freedom data from the reference element to the conforming (physical) ordering, e.g. \(u = T^{-t} \tilde{u}\).
[in]scalar_elementIndicates whether the scalar transformations should be returned for a vector element.

◆ dof_transformation_right_fn()

template<std::floating_point T>
template<typename U >
std::function< void(std::span< U >, std::span< const std::uint32_t >, std::int32_t, int)> dof_transformation_right_fn ( doftransform ttype,
bool scalar_element = false ) const
inline

Return a function that applies DOF transformation to some transposed data (see T_apply_right()).

The transformation is applied from the right-hand side, i.e.

\[ u^{t} \leftarrow u^{t} T. \]

If the transformation for the (sub)element is a permutation only, the returned function will do change the ordering for the (sub)element as it is assumed that permutations are incorporated into the degree-of-freedom map.

The signature of the returned function has four arguments:

  • [in,out] data The data to be transformed. This data is flattened with row-major layout, shape=(num_dofs, block_size)
  • [in] cell_info Permutation data for the cell. The size of this is num_cells. For elements where no transformations are required, an empty span can be passed in.
  • [in] cell The cell number
  • [in] block_size The block_size of the input data
Parameters
[in]ttypeTransformation type. See dof_transformation_fn().
[in]scalar_elementIndicate if the scalar transformations should be returned for a vector element.

◆ interpolation_ident()

template<std::floating_point T>
bool interpolation_ident ( ) const
noexcept

Check if interpolation into the finite element space is an identity operation given the evaluation on an expression at specific points, i.e. the degree-of-freedom are equal to point evaluations. The function will return true for Lagrange elements.

Returns
True if interpolation is an identity operation

◆ interpolation_operator()

template<std::floating_point T>
std::pair< std::vector< T >, std::array< std::size_t, 2 > > interpolation_operator ( ) const

Interpolation operator (matrix) Pi that maps a function evaluated at the points provided by FiniteElement::interpolation_points to the element degrees of freedom, i.e. dofs = Pi f_x. See the Basix documentation for basix::FiniteElement::interpolation_matrix for how the data in f_x should be ordered.

Returns
The interpolation operator Pi, returning the data for Pi (row-major storage) and the shape (num_dofs, num_points * / value_size)

◆ interpolation_points()

template<std::floating_point T>
std::pair< std::vector< T >, std::array< std::size_t, 2 > > interpolation_points ( ) const

Points on the reference cell at which an expression needs to be evaluated in order to interpolate the expression in the finite element space.

For Lagrange elements the points will just be the nodal positions. For other elements the points will typically be the quadrature points used to evaluate moment degrees of freedom.

Returns
Interpolation point coordinates on the reference cell, returning the (0) coordinates data (row-major) storage and (1) the shape (num_points, tdim).

◆ is_mixed()

template<std::floating_point T>
bool is_mixed ( ) const
noexcept

Check if element is a mixed element.

A mixed element is composed of two or more elements of different types. A blocked element, e.g. a Lagrange element with block size >= 1 is not considered mixed.

Returns
True if element is mixed.

◆ map_ident()

template<std::floating_point T>
bool map_ident ( ) const
noexcept

Check if the push forward/pull back map from the values on reference to the values on a physical cell for this element is the identity map.

Returns
True if the map is the identity

◆ needs_dof_permutations()

template<std::floating_point T>
bool needs_dof_permutations ( ) const
noexcept

Check if DOF permutations are needed for this element.

DOF permutations will be needed for elements which might not be continuous when two neighbouring cells disagree on the orientation of a shared subentity, and when this can be corrected for by permuting the DOF numbering in the dofmap.

For example, higher order Lagrange elements will need DOF permutations, as the arrangement of DOFs on a shared sub-entity may be different from the point of view of neighbouring cells, and this can be corrected for by permuting the DOF numbers on each cell.

Returns
True if DOF transformations are required.

◆ needs_dof_transformations()

template<std::floating_point T>
bool needs_dof_transformations ( ) const
noexcept

Check if DOF transformations are needed for this element.

DOF transformations will be needed for elements which might not be continuous when two neighbouring cells disagree on the orientation of a shared sub-entity, and when this cannot be corrected for by permuting the DOF numbering in the dofmap.

For example, Raviart-Thomas elements will need DOF transformations, as the neighbouring cells may disagree on the orientation of a basis function, and this orientation cannot be corrected for by permuting the DOF numbers on each cell.

Returns
True if DOF transformations are required.

◆ num_sub_elements()

template<std::floating_point T>
int num_sub_elements ( ) const
noexcept

Number of sub elements (for a mixed or blocked element).

Returns
Number of sub elements.

◆ operator!=()

template<std::floating_point T>
bool operator!= ( const FiniteElement< T > & e) const

Check if two elements are not equivalent.

Returns
True is the two elements are not the same.
Note
Equality can be checked only for non-mixed elements. For a mixed element, this function will raise an exception.

◆ operator==()

template<std::floating_point T>
bool operator== ( const FiniteElement< T > & e) const

Check if two elements are equivalent.

Returns
True is the two elements are the same.
Note
Equality can be checked only for non-mixed elements. For a mixed element, this function will throw an exception.

◆ permute()

template<std::floating_point T>
void permute ( std::span< std::int32_t > doflist,
std::uint32_t cell_permutation ) const

Permute indices associated with degree-of-freedoms on the reference element ordering to the globally consistent physical element degree-of-freedom ordering.

Given an array \(\tilde{d}\) that holds an integer associated with each degree-of-freedom and following the reference element degree-of-freedom ordering, this function computes

\[ d = P \tilde{d},\]

where \(P\) is a permutation matrix and \(d\) holds the integers in \(\tilde{d}\) but permuted to follow the globally consistent physical element degree-of-freedom ordering. The permutation is computed in-place.

Parameters
[in,out]doflistIndices associated with the degrees-of-freedom. Size=num_dofs.
[in]cell_permutationPermutation data for the cell.

◆ permute_inv()

template<std::floating_point T>
void permute_inv ( std::span< std::int32_t > doflist,
std::uint32_t cell_permutation ) const

Perform the inverse of the operation applied by permute().

Given an array \(d\) that holds an integer associated with each degree-of-freedom and following the globally consistent physical element degree-of-freedom ordering, this function computes

\[ \tilde{d} = P^{T} d, \]

where \(P^{T}\) is a permutation matrix and \(\tilde{d}\) holds the integers in \(d\) but permuted to follow the reference element degree-of-freedom ordering. The permutation is computed in-place.

Parameters
[in,out]doflistIndices associated with the degrees-of-freedom. Size=num_dofs.
[in]cell_permutationPermutation data for the cell.

◆ reference_value_shape()

template<std::floating_point T>
std::span< const std::size_t > reference_value_shape ( ) const

Value shape of the base (non-blocked) finite element field.

For non-blocked elements, this function returns the same as FiniteElement::value_shape. For blocked and quadrature elements the returned shape will be {}.

Mixed elements do not have a reference value shape.

Exceptions
Exceptionis thrown for a mixed element as mixed elements do not have a value shape.
Returns
The value shape.

◆ reference_value_size()

template<std::floating_point T>
int reference_value_size ( ) const

Value size of the base (non-blocked) finite element field.

The reference value size is the product of the reference value shape, e.g. it is 1 for a scalar element, 2 for a 2D (non-blocked) vector, 9 for a (non-blocked) second-order tensor in 3D, etc.

For blocked elements, this function returns the value shape for the 'base' element from which the blocked element is composed. For other elements, the return value is the same as FiniteElement::value_shape.

Exceptions
Exceptionis thrown for a mixed element as mixed elements do not have a value shape.
Returns
The value size.

◆ signature()

template<std::floating_point T>
std::string signature ( ) const
noexcept

String identifying the finite element.

Returns
Element signature
Warning
The function is provided for convenience, but it should not be relied upon for determining the element type. Use other functions, commonly returning enums, to determine element properties.

◆ space_dimension()

template<std::floating_point T>
int space_dimension ( ) const
noexcept

Dimension of the finite element function space (the number of degrees-of-freedom for the element).

For 'blocked' elements, this function returns the dimension of the full element rather than the dimension of the base element.

Returns
Dimension of the finite element space.

◆ T_apply()

template<std::floating_point T>
template<typename U >
void T_apply ( std::span< U > data,
std::uint32_t cell_permutation,
int n ) const
inline

Transform basis functions from the reference element ordering and orientation to the globally consistent physical element ordering and orientation.

Consider that the value of a finite element function \(f_{h}\) at a point is given by

\[ f_{h} = \phi^{T} c, \]

where \(f_{h}\) has shape \(r \times 1\), \(\phi\) has shape \(d \times r\) and holds the finite element basis functions, and \(c\) has shape \(d \times 1\) and holds the degrees-of-freedom. The basis functions and degree-of-freedom are with respect to the physical element orientation. If the degrees-of-freedom on the physical element orientation are given by

\[ \phi = T \tilde{\phi}, \]

where \(T\) is a \(d \times d\) matrix, it follows from \(f_{h} = \phi^{T} c = \tilde{\phi}^{T} T^{T} c\) that

\[ \tilde{c} = T^{T} c. \]

This function applies \(T\) to data. The transformation is performed in-place. The operator \(T\) is orthogonal for many elements, but not all.

This function calls the corresponding Basix function.

Parameters
[in,out]dataData to transform. The shape is (m, n), where m is the number of dgerees-of-freedom and the storage is row-major.
[in]cell_permutationPermutation data for the cell
[in]nNumber of columns in data.

◆ T_apply_right()

template<std::floating_point T>
template<typename U >
void T_apply_right ( std::span< U > data,
std::uint32_t cell_permutation,
int n ) const
inline

Right(post)-apply the operator applied by T_apply().

Computes

\[ v^{T} = u^{T} T \]

in-place.

Parameters
[in,out]dataThe data to be transformed. This data is flattened with row-major layout, shape=(num_dofs, block_size).
[in]cell_permutationPermutation data for the cell
[in]nBlock size of the input data

◆ tabulate() [1/2]

template<std::floating_point T>
std::pair< std::vector< T >, std::array< std::size_t, 4 > > tabulate ( std::span< const geometry_type > X,
std::array< std::size_t, 2 > shape,
int order ) const

Evaluate all derivatives of the basis functions up to given order at given points in reference cell.

Parameters
[in]XThe reference coordinates at which to evaluate the basis functions. Shape is (num_points, topological dimension) (row-major storage).
[in]shapeShape of X.
[in]orderNumber of derivatives (up to and including this order) to tabulate for.
Returns
Basis function values and array shape (row-major storage).

◆ tabulate() [2/2]

template<std::floating_point T>
void tabulate ( std::span< geometry_type > values,
std::span< const geometry_type > X,
std::array< std::size_t, 2 > shape,
int order ) const

Evaluate derivatives of the basis functions up to given order at points in the reference cell.

Parameters
[in,out]valuesArray that will be filled with the tabulated basis values. Must have shape (num_derivatives, num_points, / num_dofs, reference_value_size) (row-major storage)
[in]XThe reference coordinates at which to evaluate the basis functions. Shape is (num_points, topological dimension) (row-major storage).
[in]shapeShape of X.
[in]orderNumber of derivatives (up to and including this order) to tabulate for.

◆ Tinv_apply()

template<std::floating_point T>
template<typename U >
void Tinv_apply ( std::span< U > data,
std::uint32_t cell_permutation,
int n ) const
inline

Apply the inverse of the operator applied by T_apply().

The transformation

\[ v = T^{-1} u \]

is performed in-place.

Parameters
[in,out]dataThe data to be transformed. This data is flattened with row-major layout, shape=(num_dofs, block_size).
[in]cell_permutationPermutation data for the cell.
[in]nBlock size of the input data.

◆ Tinv_apply_right()

template<std::floating_point T>
template<typename U >
void Tinv_apply_right ( std::span< U > data,
std::uint32_t cell_permutation,
int n ) const
inline

Right(post)-apply the inverse of the operator applied by T_apply().

Computes

\[ v^{T} = u^{T} T^{-1} \]

in-place.

Parameters
[in,out]dataData to be transformed. This data is flattened with row-major layout, shape=(num_dofs, block_size).
[in]cell_permutationPermutation data for the cell
[in]nBlock size of the input data

◆ Tt_apply()

template<std::floating_point T>
template<typename U >
void Tt_apply ( std::span< U > data,
std::uint32_t cell_permutation,
int n ) const
inline

Apply the transpose of the operator applied by T_apply().

The transformation

\[ u \leftarrow T^{T} u \]

is performed in-place.

Parameters
[in,out]dataThe data to be transformed. This data is flattened with row-major layout, shape=(num_dofs, block_size).
[in]cell_permutationPermutation data for the cell.
[in]nThe block size of the input data.

◆ Tt_apply_right()

template<std::floating_point T>
template<typename U >
void Tt_apply_right ( std::span< U > data,
std::uint32_t cell_permutation,
int n ) const
inline

Right(post)-apply the transpose of the operator applied by T_apply().

Computes

\[ v^{T} = u^{T} T^{T} \]

in-place.

Parameters
[in,out]dataData to be transformed. The data is flattened with row-major layout, shape=(num_dofs, block_size).
[in]cell_permutationPermutation data for the cell
[in]nBlock size of the input data.

◆ Tt_inv_apply()

template<std::floating_point T>
template<typename U >
void Tt_inv_apply ( std::span< U > data,
std::uint32_t cell_permutation,
int n ) const
inline

Apply the inverse transpose of the operator applied by T_apply().

The transformation

\[ v = T^{-T} u \]

is performed in-place.

Parameters
[in,out]dataThe data to be transformed. This data is flattened with row-major layout, shape=(num_dofs, block_size).
[in]cell_permutationPermutation data for the cell.
[in]nBlock_size of the input data.

◆ Tt_inv_apply_right()

template<std::floating_point T>
template<typename U >
void Tt_inv_apply_right ( std::span< U > data,
std::uint32_t cell_permutation,
int n ) const
inline

Right(post)-apply the transpose inverse of the operator applied by T_apply().

Computes

\[ v^{T} = u^{T} T^{-T} \]

in-place.

Parameters
[in,out]dataData to be transformed. This data is flattened with row-major layout, shape=(num_dofs, block_size).
[in]cell_permutationPermutation data for the cell.
[in]nBlock size of the input data.

◆ value_shape()

template<std::floating_point T>
std::span< const std::size_t > value_shape ( ) const

Value shape of the finite element field.

The value shape describes the shape of the finite element field, e.g. {} for a scalar, {2} for a vector in 2D, {3, 3} for a rank-2 tensor in 3D, etc.

Exceptions
Exceptionis thrown for a mixed element as mixed elements do not have a value shape.
Returns
The value shape.

◆ value_size()

template<std::floating_point T>
int value_size ( ) const

Value size of the finite element field.

The value size is the number of components in the finite element field. It is the product of the value shape, e.g. is is 1 for a scalar function, 2 for a 2D vector, 9 for a second-order tensor in 3D, etc. For blocked elements, this function returns the value size for the full 'blocked' element.

Note
The return value of this function is inconsistent with value_shape() for rank-2 'symmetric' elements. Due to issues elsewhere in the code base, rank-2 symmetric fields have value shape {3} (2D) or {6} rather than {2, 2} and {3, 3}, respectively. For symmetric rank-2 tensors this function returns 4 for 2D cases and 9 for 3D cases. This inconsistency will be fixed in the future.
Exceptions
Exceptionis thrown for a mixed element as mixed elements do not have a value shape.
Returns
The value size.

The documentation for this class was generated from the following files: