Note: this is documentation for an old release. View the latest documentation at docs.fenicsproject.org/basix/v0.8.0/cpp/namespacebasix_1_1quadrature.html

# Basix 0.7.0

## Enumerations

enum class  type {
Default = 0 , gauss_jacobi = 1 , gll = 2 , xiao_gimbutas = 3 ,
zienkiewicz_taylor = 20 , keast = 21 , strang_fix = 22
}

## Functions

template<std::floating_point T>
std::array< std::vector< T >, 2 > make_quadrature (const quadrature::type rule, cell::type celltype, polyset::type polytype, int m)

quadrature::type get_default_rule (cell::type celltype, int m)

template<std::floating_point T>
std::vector< T > get_gll_points (int m)

template<std::floating_point T>
std::vector< T > get_gl_points (int m)

## ◆ get_default_rule()

Get the default quadrature type for the given cell and order

Parameters
 [in] celltype The cell type [in] m Maximum degree of polynomial that this quadrature rule will integrate exactly
Returns
The quadrature type that will be used by default

## ◆ get_gl_points()

template<std::floating_point T>
 template std::vector< double > basix::quadrature::get_gl_points ( int m )

Get Gauss-Legendre (GL) points on the interval [0, 1].

Parameters
 [in] m The number of points
Returns
An array of GL points. Shape is (num points, gdim)

## ◆ get_gll_points()

template<std::floating_point T>
 template std::vector< double > basix::quadrature::get_gll_points ( int m )

Get Gauss-Lobatto-Legendre (GLL) points on the interval [0, 1].

Parameters
 [in] m The number of points
Returns
An array of GLL points. Shape is (num points, gdim)

template<std::floating_point T>
 template std::array< std::vector< double >, 2 > basix::quadrature::make_quadrature ( const quadrature::type rule, cell::type celltype, polyset::type polytype, int m )

Make a quadrature rule on a reference cell

Parameters
 [in] rule Type of quadrature rule (or use quadrature::Default) [in] celltype The cell type [in] polytype The polyset type [in] m Maximum degree of polynomial that this quadrature rule will integrate exactly
Returns
List of points and list of weights. The number of points arrays has shape (num points, gdim)