dolfinx.cpp.la

Linear algebra module

Classes

BlockMode

InsertMode

MatrixCSR_complex128(self, p[, block_mode])

MatrixCSR_complex64(self, p[, block_mode])

MatrixCSR_float32(self, p[, block_mode])

MatrixCSR_float64(self, p[, block_mode])

MatrixCSR_int32(self, p[, block_mode])

MatrixCSR_int64(self, p[, block_mode])

MatrixCSR_int8(self, p[, block_mode])

Norm

SparsityPattern()

Vector_complex128()

Vector_complex64()

Vector_float32()

Vector_float64()

Vector_int32()

Vector_int64()

Vector_int8()

class dolfinx.cpp.la.BlockMode

Bases: object

compact = dolfinx.cpp.la.BlockMode.compact
expanded = dolfinx.cpp.la.BlockMode.expanded
class dolfinx.cpp.la.InsertMode

Bases: object

add = dolfinx.cpp.la.InsertMode.add
insert = dolfinx.cpp.la.InsertMode.insert
class dolfinx.cpp.la.MatrixCSR_complex128(self, p: dolfinx.cpp.la.SparsityPattern, block_mode: dolfinx.cpp.la.BlockMode = dolfinx.cpp.la.BlockMode.compact)

Bases: object

add
property bs

(self) -> list[int]

property data

(self) -> numpy.ndarray[dtype=complex128, ]

property dtype

(self) -> str

index_map
property indices

(self) -> numpy.ndarray[dtype=int32, writable=False, ]

property indptr

(self) -> numpy.ndarray[dtype=int64, writable=False, ]

scatter_rev_begin
scatter_rev_end
scatter_reverse
set
set_value
squared_norm
to_dense
class dolfinx.cpp.la.MatrixCSR_complex64(self, p: dolfinx.cpp.la.SparsityPattern, block_mode: dolfinx.cpp.la.BlockMode = dolfinx.cpp.la.BlockMode.compact)

Bases: object

add
property bs

(self) -> list[int]

property data

(self) -> numpy.ndarray[dtype=complex64, ]

property dtype

(self) -> str

index_map
property indices

(self) -> numpy.ndarray[dtype=int32, writable=False, ]

property indptr

(self) -> numpy.ndarray[dtype=int64, writable=False, ]

scatter_rev_begin
scatter_rev_end
scatter_reverse
set
set_value
squared_norm
to_dense
class dolfinx.cpp.la.MatrixCSR_float32(self, p: dolfinx.cpp.la.SparsityPattern, block_mode: dolfinx.cpp.la.BlockMode = dolfinx.cpp.la.BlockMode.compact)

Bases: object

add
property bs

(self) -> list[int]

property data

(self) -> numpy.ndarray[dtype=float32, ]

property dtype

(self) -> str

index_map
property indices

(self) -> numpy.ndarray[dtype=int32, writable=False, ]

property indptr

(self) -> numpy.ndarray[dtype=int64, writable=False, ]

scatter_rev_begin
scatter_rev_end
scatter_reverse
set
set_value
squared_norm
to_dense
class dolfinx.cpp.la.MatrixCSR_float64(self, p: dolfinx.cpp.la.SparsityPattern, block_mode: dolfinx.cpp.la.BlockMode = dolfinx.cpp.la.BlockMode.compact)

Bases: object

add
property bs

(self) -> list[int]

property data

(self) -> numpy.ndarray[dtype=float64, ]

property dtype

(self) -> str

index_map
property indices

(self) -> numpy.ndarray[dtype=int32, writable=False, ]

property indptr

(self) -> numpy.ndarray[dtype=int64, writable=False, ]

scatter_rev_begin
scatter_rev_end
scatter_reverse
set
set_value
squared_norm
to_dense
class dolfinx.cpp.la.MatrixCSR_int32(self, p: dolfinx.cpp.la.SparsityPattern, block_mode: dolfinx.cpp.la.BlockMode = dolfinx.cpp.la.BlockMode.compact)

Bases: object

add
property bs

(self) -> list[int]

property data

(self) -> numpy.ndarray[dtype=int32, ]

property dtype

(self) -> str

index_map
property indices

(self) -> numpy.ndarray[dtype=int32, writable=False, ]

property indptr

(self) -> numpy.ndarray[dtype=int64, writable=False, ]

scatter_rev_begin
scatter_rev_end
scatter_reverse
set
set_value
squared_norm
to_dense
class dolfinx.cpp.la.MatrixCSR_int64(self, p: dolfinx.cpp.la.SparsityPattern, block_mode: dolfinx.cpp.la.BlockMode = dolfinx.cpp.la.BlockMode.compact)

Bases: object

add
property bs

(self) -> list[int]

property data

(self) -> numpy.ndarray[dtype=int64, ]

property dtype

(self) -> str

index_map
property indices

(self) -> numpy.ndarray[dtype=int32, writable=False, ]

property indptr

(self) -> numpy.ndarray[dtype=int64, writable=False, ]

scatter_rev_begin
scatter_rev_end
scatter_reverse
set
set_value
squared_norm
to_dense
class dolfinx.cpp.la.MatrixCSR_int8(self, p: dolfinx.cpp.la.SparsityPattern, block_mode: dolfinx.cpp.la.BlockMode = dolfinx.cpp.la.BlockMode.compact)

Bases: object

add
property bs

(self) -> list[int]

property data

(self) -> numpy.ndarray[dtype=int8, ]

property dtype

(self) -> str

index_map
property indices

(self) -> numpy.ndarray[dtype=int32, writable=False, ]

property indptr

(self) -> numpy.ndarray[dtype=int64, writable=False, ]

scatter_rev_begin
scatter_rev_end
scatter_reverse
set
set_value
squared_norm
to_dense
class dolfinx.cpp.la.Norm

Bases: object

frobenius = dolfinx.cpp.la.Norm.frobenius
l1 = dolfinx.cpp.la.Norm.l1
l2 = dolfinx.cpp.la.Norm.l2
linf = dolfinx.cpp.la.Norm.linf
class dolfinx.cpp.la.SparsityPattern(self, comm: MPICommWrapper, maps: list[dolfinx.cpp.common.IndexMap], bs: list[int])
class dolfinx.cpp.la.SparsityPattern(self, comm: MPICommWrapper, patterns: list[list[dolfinx.cpp.la.SparsityPattern]], maps: list[list[tuple[std::reference_wrapper<dolfinx::common::IndexMap const>, int]]], bs: list[list[int]])

Bases: object

column_index_map
finalize
property graph

(self) -> tuple[numpy.ndarray[dtype=int32, writable=False, ], numpy.ndarray[dtype=int64, writable=False, ]]

index_map
insert
insert_diagonal
property num_nonzeros

(self) -> int

class dolfinx.cpp.la.Vector_complex128(self, map: dolfinx.cpp.common.IndexMap, bs: int)
class dolfinx.cpp.la.Vector_complex128(self, vec: dolfinx.cpp.la.Vector_complex128)

Bases: object

property array

(self) -> numpy.ndarray[dtype=complex128, ]

property bs

(self) -> int

property dtype

(self) -> str

property index_map

(self) -> dolfinx.cpp.common.IndexMap

scatter_forward
scatter_reverse
class dolfinx.cpp.la.Vector_complex64(self, map: dolfinx.cpp.common.IndexMap, bs: int)
class dolfinx.cpp.la.Vector_complex64(self, vec: dolfinx.cpp.la.Vector_complex64)

Bases: object

property array

(self) -> numpy.ndarray[dtype=complex64, ]

property bs

(self) -> int

property dtype

(self) -> str

property index_map

(self) -> dolfinx.cpp.common.IndexMap

scatter_forward
scatter_reverse
class dolfinx.cpp.la.Vector_float32(self, map: dolfinx.cpp.common.IndexMap, bs: int)
class dolfinx.cpp.la.Vector_float32(self, vec: dolfinx.cpp.la.Vector_float32)

Bases: object

property array

(self) -> numpy.ndarray[dtype=float32, ]

property bs

(self) -> int

property dtype

(self) -> str

property index_map

(self) -> dolfinx.cpp.common.IndexMap

scatter_forward
scatter_reverse
class dolfinx.cpp.la.Vector_float64(self, map: dolfinx.cpp.common.IndexMap, bs: int)
class dolfinx.cpp.la.Vector_float64(self, vec: dolfinx.cpp.la.Vector_float64)

Bases: object

property array

(self) -> numpy.ndarray[dtype=float64, ]

property bs

(self) -> int

property dtype

(self) -> str

property index_map

(self) -> dolfinx.cpp.common.IndexMap

scatter_forward
scatter_reverse
class dolfinx.cpp.la.Vector_int32(self, map: dolfinx.cpp.common.IndexMap, bs: int)
class dolfinx.cpp.la.Vector_int32(self, vec: dolfinx.cpp.la.Vector_int32)

Bases: object

property array

(self) -> numpy.ndarray[dtype=int32, ]

property bs

(self) -> int

property dtype

(self) -> str

property index_map

(self) -> dolfinx.cpp.common.IndexMap

scatter_forward
scatter_reverse
class dolfinx.cpp.la.Vector_int64(self, map: dolfinx.cpp.common.IndexMap, bs: int)
class dolfinx.cpp.la.Vector_int64(self, vec: dolfinx.cpp.la.Vector_int64)

Bases: object

property array

(self) -> numpy.ndarray[dtype=int64, ]

property bs

(self) -> int

property dtype

(self) -> str

property index_map

(self) -> dolfinx.cpp.common.IndexMap

scatter_forward
scatter_reverse
class dolfinx.cpp.la.Vector_int8(self, map: dolfinx.cpp.common.IndexMap, bs: int)
class dolfinx.cpp.la.Vector_int8(self, vec: dolfinx.cpp.la.Vector_int8)

Bases: object

property array

(self) -> numpy.ndarray[dtype=int8, ]

property bs

(self) -> int

property dtype

(self) -> str

property index_map

(self) -> dolfinx.cpp.common.IndexMap

scatter_forward
scatter_reverse