dolfinx.cpp.la

Linear algebra module

Classes

BlockMode(value[, names, module, qualname, ...])

InsertMode(value[, names, module, qualname, ...])

MatrixCSR_complex128(self, p[, block_mode])

MatrixCSR_complex64(self, p[, block_mode])

MatrixCSR_float32(self, p[, block_mode])

MatrixCSR_float64(self, p[, block_mode])

MatrixCSR_int32(self, p[, block_mode])

MatrixCSR_int64(self, p[, block_mode])

MatrixCSR_int8(self, p[, block_mode])

Norm(value[, names, module, qualname, type, ...])

SparsityPattern()

Vector_complex128()

Vector_complex64()

Vector_float32()

Vector_float64()

Vector_int32()

Vector_int64()

Vector_int8()

class dolfinx.cpp.la.BlockMode(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

compact = 0
expanded = 1
class dolfinx.cpp.la.InsertMode(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

add = 0
insert = 1
class dolfinx.cpp.la.MatrixCSR_complex128(self, p: dolfinx.cpp.la.SparsityPattern, block_mode: dolfinx.cpp.la.BlockMode = BlockMode.compact)

Bases: object

add
property bs

(self) -> list[int]

property data

(self) -> numpy.ndarray[dtype=complex128]

property dtype

(self) -> str

index_map
property indices

(self) -> numpy.ndarray[dtype=int32, writable=False]

property indptr

(self) -> numpy.ndarray[dtype=int64, writable=False]

scatter_rev_begin
scatter_rev_end
scatter_reverse
set
set_value
squared_norm
to_dense
class dolfinx.cpp.la.MatrixCSR_complex64(self, p: dolfinx.cpp.la.SparsityPattern, block_mode: dolfinx.cpp.la.BlockMode = BlockMode.compact)

Bases: object

add
property bs

(self) -> list[int]

property data

(self) -> numpy.ndarray[dtype=complex64]

property dtype

(self) -> str

index_map
property indices

(self) -> numpy.ndarray[dtype=int32, writable=False]

property indptr

(self) -> numpy.ndarray[dtype=int64, writable=False]

scatter_rev_begin
scatter_rev_end
scatter_reverse
set
set_value
squared_norm
to_dense
class dolfinx.cpp.la.MatrixCSR_float32(self, p: dolfinx.cpp.la.SparsityPattern, block_mode: dolfinx.cpp.la.BlockMode = BlockMode.compact)

Bases: object

add
property bs

(self) -> list[int]

property data

(self) -> numpy.ndarray[dtype=float32]

property dtype

(self) -> str

index_map
property indices

(self) -> numpy.ndarray[dtype=int32, writable=False]

property indptr

(self) -> numpy.ndarray[dtype=int64, writable=False]

scatter_rev_begin
scatter_rev_end
scatter_reverse
set
set_value
squared_norm
to_dense
class dolfinx.cpp.la.MatrixCSR_float64(self, p: dolfinx.cpp.la.SparsityPattern, block_mode: dolfinx.cpp.la.BlockMode = BlockMode.compact)

Bases: object

add
property bs

(self) -> list[int]

property data

(self) -> numpy.ndarray[dtype=float64]

property dtype

(self) -> str

index_map
property indices

(self) -> numpy.ndarray[dtype=int32, writable=False]

property indptr

(self) -> numpy.ndarray[dtype=int64, writable=False]

scatter_rev_begin
scatter_rev_end
scatter_reverse
set
set_value
squared_norm
to_dense
class dolfinx.cpp.la.MatrixCSR_int32(self, p: dolfinx.cpp.la.SparsityPattern, block_mode: dolfinx.cpp.la.BlockMode = BlockMode.compact)

Bases: object

add
property bs

(self) -> list[int]

property data

(self) -> numpy.ndarray[dtype=int32]

property dtype

(self) -> str

index_map
property indices

(self) -> numpy.ndarray[dtype=int32, writable=False]

property indptr

(self) -> numpy.ndarray[dtype=int64, writable=False]

scatter_rev_begin
scatter_rev_end
scatter_reverse
set
set_value
squared_norm
to_dense
class dolfinx.cpp.la.MatrixCSR_int64(self, p: dolfinx.cpp.la.SparsityPattern, block_mode: dolfinx.cpp.la.BlockMode = BlockMode.compact)

Bases: object

add
property bs

(self) -> list[int]

property data

(self) -> numpy.ndarray[dtype=int64]

property dtype

(self) -> str

index_map
property indices

(self) -> numpy.ndarray[dtype=int32, writable=False]

property indptr

(self) -> numpy.ndarray[dtype=int64, writable=False]

scatter_rev_begin
scatter_rev_end
scatter_reverse
set
set_value
squared_norm
to_dense
class dolfinx.cpp.la.MatrixCSR_int8(self, p: dolfinx.cpp.la.SparsityPattern, block_mode: dolfinx.cpp.la.BlockMode = BlockMode.compact)

Bases: object

add
property bs

(self) -> list[int]

property data

(self) -> numpy.ndarray[dtype=int8]

property dtype

(self) -> str

index_map
property indices

(self) -> numpy.ndarray[dtype=int32, writable=False]

property indptr

(self) -> numpy.ndarray[dtype=int64, writable=False]

scatter_rev_begin
scatter_rev_end
scatter_reverse
set
set_value
squared_norm
to_dense
class dolfinx.cpp.la.Norm(value, names=<not given>, *values, module=None, qualname=None, type=None, start=1, boundary=None)

Bases: Enum

frobenius = 3
l1 = 0
l2 = 1
linf = 2
class dolfinx.cpp.la.SparsityPattern(self, comm: MPICommWrapper, maps: collections.abc.Sequence[dolfinx.cpp.common.IndexMap], bs: collections.abc.Sequence[int])
class dolfinx.cpp.la.SparsityPattern(self, comm: MPICommWrapper, patterns: collections.abc.Sequence[collections.abc.Sequence[dolfinx.cpp.la.SparsityPattern]], maps: collections.abc.Sequence[collections.abc.Sequence[tuple[std::reference_wrapper<dolfinx::common::IndexMap const>, int]]], bs: collections.abc.Sequence[collections.abc.Sequence[int]])

Bases: object

column_index_map
finalize
property graph

(self) -> tuple[numpy.ndarray[dtype=int32, writable=False], numpy.ndarray[dtype=int64, writable=False]]

index_map
insert
insert_diagonal
property num_nonzeros

(self) -> int

class dolfinx.cpp.la.Vector_complex128(self, map: dolfinx.cpp.common.IndexMap, bs: int)
class dolfinx.cpp.la.Vector_complex128(self, vec: dolfinx.cpp.la.Vector_complex128)

Bases: object

property array

(self) -> numpy.ndarray[dtype=complex128]

property bs

(self) -> int

property dtype

(self) -> str

property index_map

(self) -> dolfinx.cpp.common.IndexMap

scatter_forward
scatter_reverse
class dolfinx.cpp.la.Vector_complex64(self, map: dolfinx.cpp.common.IndexMap, bs: int)
class dolfinx.cpp.la.Vector_complex64(self, vec: dolfinx.cpp.la.Vector_complex64)

Bases: object

property array

(self) -> numpy.ndarray[dtype=complex64]

property bs

(self) -> int

property dtype

(self) -> str

property index_map

(self) -> dolfinx.cpp.common.IndexMap

scatter_forward
scatter_reverse
class dolfinx.cpp.la.Vector_float32(self, map: dolfinx.cpp.common.IndexMap, bs: int)
class dolfinx.cpp.la.Vector_float32(self, vec: dolfinx.cpp.la.Vector_float32)

Bases: object

property array

(self) -> numpy.ndarray[dtype=float32]

property bs

(self) -> int

property dtype

(self) -> str

property index_map

(self) -> dolfinx.cpp.common.IndexMap

scatter_forward
scatter_reverse
class dolfinx.cpp.la.Vector_float64(self, map: dolfinx.cpp.common.IndexMap, bs: int)
class dolfinx.cpp.la.Vector_float64(self, vec: dolfinx.cpp.la.Vector_float64)

Bases: object

property array

(self) -> numpy.ndarray[dtype=float64]

property bs

(self) -> int

property dtype

(self) -> str

property index_map

(self) -> dolfinx.cpp.common.IndexMap

scatter_forward
scatter_reverse
class dolfinx.cpp.la.Vector_int32(self, map: dolfinx.cpp.common.IndexMap, bs: int)
class dolfinx.cpp.la.Vector_int32(self, vec: dolfinx.cpp.la.Vector_int32)

Bases: object

property array

(self) -> numpy.ndarray[dtype=int32]

property bs

(self) -> int

property dtype

(self) -> str

property index_map

(self) -> dolfinx.cpp.common.IndexMap

scatter_forward
scatter_reverse
class dolfinx.cpp.la.Vector_int64(self, map: dolfinx.cpp.common.IndexMap, bs: int)
class dolfinx.cpp.la.Vector_int64(self, vec: dolfinx.cpp.la.Vector_int64)

Bases: object

property array

(self) -> numpy.ndarray[dtype=int64]

property bs

(self) -> int

property dtype

(self) -> str

property index_map

(self) -> dolfinx.cpp.common.IndexMap

scatter_forward
scatter_reverse
class dolfinx.cpp.la.Vector_int8(self, map: dolfinx.cpp.common.IndexMap, bs: int)
class dolfinx.cpp.la.Vector_int8(self, vec: dolfinx.cpp.la.Vector_int8)

Bases: object

property array

(self) -> numpy.ndarray[dtype=int8]

property bs

(self) -> int

property dtype

(self) -> str

property index_map

(self) -> dolfinx.cpp.common.IndexMap

scatter_forward
scatter_reverse