#include <CoordinateElement.h>
|
template<typename X > |
using | mdspan2_t |
| mdspan typedef
|
|
|
| CoordinateElement (std::shared_ptr< const basix::FiniteElement< T > > element) |
| Create a coordinate element from a Basix element.
|
|
| CoordinateElement (mesh::CellType celltype, int degree, basix::element::lagrange_variant type=basix::element::lagrange_variant::unset) |
| Create a Lagrange coordinate element.
|
|
virtual | ~CoordinateElement ()=default |
| Destructor.
|
|
mesh::CellType | cell_shape () const |
| Cell shape.
|
|
int | degree () const |
| The polynomial degree of the element.
|
|
int | dim () const |
| The dimension of the coordinate element space.
|
|
basix::element::lagrange_variant | variant () const |
| Variant of the element.
|
|
std::array< std::size_t, 4 > | tabulate_shape (std::size_t nd, std::size_t num_points) const |
| Shape of array to fill when calling tabulate .
|
|
void | tabulate (int nd, std::span< const T > X, std::array< std::size_t, 2 > shape, std::span< T > basis) const |
| Evaluate basis values and derivatives at set of points.
|
|
ElementDofLayout | create_dof_layout () const |
| Compute and return the dof layout.
|
|
void | pull_back_nonaffine (mdspan2_t< T > X, mdspan2_t< const T > x, mdspan2_t< const T > cell_geometry, double tol=1.0e-6, int maxit=15) const |
| Compute reference coordinates X for physical coordinates x for a non-affine map.
|
|
void | permute (std::span< std::int32_t > dofs, std::uint32_t cell_perm) const |
| Permute a list of DOF numbers on a cell.
|
|
void | permute_inv (std::span< std::int32_t > dofs, std::uint32_t cell_perm) const |
| Reverses a DOF permutation.
|
|
bool | needs_dof_permutations () const |
| Indicates whether the geometry DOF numbers on each cell need permuting.
|
|
bool | is_affine () const noexcept |
|
|
template<typename U , typename V , typename W > |
static void | compute_jacobian (const U &dphi, const V &cell_geometry, W &&J) |
|
template<typename U , typename V > |
static void | compute_jacobian_inverse (const U &J, V &&K) |
| Compute the inverse of the Jacobian.
|
|
template<typename U > |
static double | compute_jacobian_determinant (const U &J, std::span< typename U::value_type > w) |
| Compute the determinant of the Jacobian.
|
|
template<typename U , typename V , typename W > |
static void | push_forward (U &&x, const V &cell_geometry, const W &phi) |
| Compute physical coordinates x for points X in the reference configuration.
|
|
template<typename U , typename V , typename W > |
static void | pull_back_affine (U &&X, const V &K, const std::array< T, 3 > &x0, const W &x) |
| Compute reference coordinates X for physical coordinates x for an affine map. For the affine case, x = J X + x0 , and this function computes X = K(x -x0) where K = J^{-1} .
|
|
template<std::floating_point T>
class dolfinx::fem::CoordinateElement< T >
A CoordinateElement manages coordinate mappings for isoparametric cells.
- Todo
- A dof layout on a reference cell needs to be defined.
- Template Parameters
-
T | Floating point (real) type for the geometry and for the element basis. |
◆ mdspan2_t
template<std::floating_point T>
template<typename X >
Initial value: MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
X, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents<std::size_t, 2>>
mdspan typedef
◆ CoordinateElement() [1/2]
template<std::floating_point T>
Create a coordinate element from a Basix element.
- Parameters
-
[in] | element | Basix finite element |
◆ CoordinateElement() [2/2]
template<std::floating_point T>
Create a Lagrange coordinate element.
- Parameters
-
[in] | celltype | Cell shape. |
[in] | degree | Polynomial degree of the map. |
[in] | type | Type of Lagrange element (see Basix documentation for possible types). |
◆ cell_shape()
template<std::floating_point T>
Cell shape.
- Returns
- The cell shape
◆ compute_jacobian()
template<std::floating_point T>
template<typename U , typename V , typename W >
static void compute_jacobian |
( |
const U & | dphi, |
|
|
const V & | cell_geometry, |
|
|
W && | J ) |
|
inlinestatic |
Compute Jacobian for a cell with given geometry using the basis functions and first order derivatives.
- Parameters
-
[in] | dphi | Derivatives of the basis functions (shape=(tdim, num geometry nodes)) |
[in] | cell_geometry | The cell nodes coordinates (shape=(num geometry nodes, gdim)) |
[out] | J | The Jacobian. It must have shape=(gdim, tdim) and must initialized to zero |
◆ compute_jacobian_determinant()
template<std::floating_point T>
template<typename U >
static double compute_jacobian_determinant |
( |
const U & | J, |
|
|
std::span< typename U::value_type > | w ) |
|
inlinestatic |
Compute the determinant of the Jacobian.
- Parameters
-
[in] | J | Jacobian (shape=(gdim, tdim)). |
[in] | w | Working memory, required when gdim != tdim. Size must be at least 2 * gdim * tdim. |
- Returns
- Determinant of
J
.
◆ compute_jacobian_inverse()
template<std::floating_point T>
template<typename U , typename V >
static void compute_jacobian_inverse |
( |
const U & | J, |
|
|
V && | K ) |
|
inlinestatic |
Compute the inverse of the Jacobian.
- Parameters
-
[in] | J | Jacobian (shape=(gdim, tdim)). |
[out] | K | Inverse Jacobian (shape=(tdim, gdim)). |
◆ degree()
template<std::floating_point T>
The polynomial degree of the element.
- Returns
- The degree
◆ dim()
template<std::floating_point T>
The dimension of the coordinate element space.
The number of basis function is returned. E.g., for a linear triangle cell the dimension will be 3.
- Returns
- Dimension of the coordinate element space.
◆ is_affine()
template<std::floating_point T>
Check is geometry map is affine
- Returns
- True is geometry map is affine
◆ needs_dof_permutations()
template<std::floating_point T>
bool needs_dof_permutations |
( |
| ) |
const |
Indicates whether the geometry DOF numbers on each cell need permuting.
For higher order geometries (where there is more than one DOF on a subentity of the cell), this will be true.
◆ pull_back_affine()
template<std::floating_point T>
template<typename U , typename V , typename W >
static void pull_back_affine |
( |
U && | X, |
|
|
const V & | K, |
|
|
const std::array< T, 3 > & | x0, |
|
|
const W & | x ) |
|
inlinestatic |
Compute reference coordinates X for physical coordinates x for an affine map. For the affine case, x = J X + x0
, and this function computes X = K(x -x0)
where K = J^{-1}
.
- Parameters
-
[out] | X | Reference coordinates to compute (shape=(num_points, tdim) ), |
[in] | K | Inverse of the geometry Jacobian (shape=(tdim, gdim) ). |
[in] | x0 | Physical coordinate of reference coordinate X0=(0, 0, 0) . |
[in] | x | Physical coordinates (shape=(num_points, gdim)). |
◆ pull_back_nonaffine()
template<std::floating_point T>
void pull_back_nonaffine |
( |
mdspan2_t< T > | X, |
|
|
mdspan2_t< const T > | x, |
|
|
mdspan2_t< const T > | cell_geometry, |
|
|
double | tol = 1.0e-6, |
|
|
int | maxit = 15 ) const |
Compute reference coordinates X
for physical coordinates x
for a non-affine map.
- Parameters
-
[in,out] | X | The reference coordinates to compute (shape=(num_points, tdim) ). |
[in] | x | Physical coordinates (shape=(num_points, gdim) ). |
[in] | cell_geometry | Cell nodes coordinates (shape=(num geometry nodes, gdim) ). |
[in] | tol | Tolerance for termination of Newton method. |
[in] | maxit | Maximum number of Newton iterations |
- Note
- If convergence is not achieved within
maxit
, the function throws a runtime error.
◆ push_forward()
template<std::floating_point T>
template<typename U , typename V , typename W >
static void push_forward |
( |
U && | x, |
|
|
const V & | cell_geometry, |
|
|
const W & | phi ) |
|
inlinestatic |
Compute physical coordinates x for points X in the reference configuration.
- Parameters
-
[in,out] | x | The physical coordinates of the reference points X (rank 2). |
[in] | cell_geometry | Cell node physical coordinates (rank 2). |
[in] | phi | Tabulated basis functions at reference points X (rank 2). |
◆ tabulate()
template<std::floating_point T>
void tabulate |
( |
int | nd, |
|
|
std::span< const T > | X, |
|
|
std::array< std::size_t, 2 > | shape, |
|
|
std::span< T > | basis ) const |
Evaluate basis values and derivatives at set of points.
- Parameters
-
[in] | nd | The order of derivatives, up to and including, to compute. Use 0 for the basis functions only. |
[in] | X | The points at which to compute the basis functions. The shape of X is (number of points, geometric dimension). |
[in] | shape | The shape of X . |
[out] | basis | The array to fill with the basis function values. The shape can be computed using tabulate_shape . |
◆ tabulate_shape()
template<std::floating_point T>
std::array< std::size_t, 4 > tabulate_shape |
( |
std::size_t | nd, |
|
|
std::size_t | num_points ) const |
Shape of array to fill when calling tabulate
.
- Parameters
-
[in] | nd | The order of derivatives, up to and including, to compute. Use 0 for the basis functions only |
[in] | num_points | Number of points at which to evaluate the basis functions. |
- Returns
- Shape of the array to be filled by
tabulate
.
The documentation for this class was generated from the following files:
- /__w/dolfinx/dolfinx/cpp/dolfinx/fem/CoordinateElement.h
- /__w/dolfinx/dolfinx/cpp/dolfinx/fem/CoordinateElement.cpp