Copyright (C) 2022 Igor A. Baratta
This file is part of DOLFINx (https://www.fenicsproject.org)
SPDX-License-Identifier: LGPL-3.0-or-later
Matrix-free conjugate gradient (CG) solver
This demo illustrates how to:
Solve a linear partial differential equation using a matrix-free CG solver
Create and apply Dirichlet boundary conditions
Compute errors
\[\begin{align*}
- \nabla^{2} u &= f \quad {\rm in} \ \Omega, \\
u &= u_D \quad {\rm on} \ \Gamma_{D}
\end{align*}\]
where
\[\begin{align*}
u_D &= 1 + x^2 + 2y^2, \\
f = -6
\end{align*}\]
Note
This demo illustrates the use of a matrix-free Conjugate Gradient solver. Many practical problems will also require a preconditioner to create an efficient solver.
UFL form file
The UFL file is implemented in
demo_poisson_matrix_free/poisson.py
.
UFL form implemented in python
UFL input for the Matrix-free Poisson Demo
from basix.ufl import element
from ufl import (
Coefficient,
Constant,
FunctionSpace,
Mesh,
TestFunction,
TrialFunction,
action,
dx,
grad,
inner,
)
coord_element = element("Lagrange", "triangle", 1, shape=(2,))
mesh = Mesh(coord_element)
# Function Space
e = element("Lagrange", "triangle", 2)
V = FunctionSpace(mesh, e)
# Trial and test functions
u = TrialFunction(V)
v = TestFunction(V)
# Constant RHS
f = Constant(V)
# Bilinear and linear forms according to the variational
# formulation of the equations:
a = inner(grad(u), grad(v)) * dx
L = inner(f, v) * dx
# Linear form representing the action of the form `a`` on the
# coefficient `ui`:`
ui = Coefficient(V)
M = action(a, ui)
# Form to compute the L2 norm of the error
usol = Coefficient(V)
uexact = Coefficient(V)
E = inner(usol - uexact, usol - uexact) * dx
forms = [M, L, E]
C++ program
#include "poisson.h"
#include <cmath>
#include <complex>
#include <concepts>
#include <dolfinx.h>
#include <dolfinx/common/types.h>
#include <dolfinx/fem/Constant.h>
#include <memory>
using namespace dolfinx;
namespace linalg
{
/// @brief Compute vector r = alpha * x + y.
/// @param[out] r
/// @param[in] alpha
/// @param[in] x
/// @param[in] y
void axpy(auto&& r, auto alpha, auto&& x, auto&& y)
{
std::transform(x.array().begin(), x.array().end(), y.array().begin(),
r.mutable_array().begin(),
[alpha](auto x, auto y) { return alpha * x + y; });
}
/// @brief Solve problem A.x = b using the conjugate gradient (CG)
/// method.
///
/// @param[in, out] x Solution vector, may be set to an initial guess
/// hence no zeroed.
/// @param[in] b Right-hand side vector.
/// @param[in] action Function that computes the action of the linear
/// operator on a vector.
/// @param[in] kmax Maximum number of iterations
/// @param[in] rtol Relative tolerances for convergence
/// @return Number of CG iterations.
/// @pre The ghost values of `x` and `b` must be updated before this
/// function is called.
int cg(auto& x, auto& b, auto action, int kmax = 50, double rtol = 1e-8)
{
using T = typename std::decay_t<decltype(x)>::value_type;
// Create working vectors
la::Vector r(b), y(b);
// Compute initial residual r0 = b - Ax0
action(x, y);
axpy(r, T(-1), y, b);
// Create p work vector
la::Vector p(r);
// Iterations of CG
auto rnorm0 = la::squared_norm(r);
auto rtol2 = rtol * rtol;
auto rnorm = rnorm0;
int k = 0;
while (k < kmax)
{
++k;
// Compute y = A p
action(p, y);
// Compute alpha = r.r/p.y
T alpha = rnorm / la::inner_product(p, y);
// Update x (x <- x + alpha*p)
axpy(x, alpha, p, x);
// Update r (r <- r - alpha*y)
axpy(r, -alpha, y, r);
// Update residual norm
auto rnorm_new = la::squared_norm(r);
T beta = rnorm_new / rnorm;
rnorm = rnorm_new;
if (rnorm / rnorm0 < rtol2)
break;
// Update p (p <- beta * p + r)
axpy(p, beta, p, r);
}
return k;
}
} // namespace linalg
template <typename T, std::floating_point U>
void solver(MPI_Comm comm)
{
// Create mesh and function space
auto mesh = std::make_shared<mesh::Mesh<U>>(mesh::create_rectangle<U>(
comm, {{{0.0, 0.0}, {1.0, 1.0}}}, {10, 10}, mesh::CellType::triangle,
mesh::create_cell_partitioner(mesh::GhostMode::none)));
auto V = std::make_shared<fem::FunctionSpace<U>>(
fem::create_functionspace(functionspace_form_poisson_M, "ui", mesh));
// Prepare and set Constants for the bilinear form
auto f = std::make_shared<fem::Constant<T>>(-6.0);
// Define variational forms
auto L = std::make_shared<fem::Form<T, U>>(
fem::create_form<T>(*form_poisson_L, {V}, {}, {{"f", f}}, {}));
// Action of the bilinear form "a" on a function ui
auto ui = std::make_shared<fem::Function<T, U>>(V);
auto M = std::make_shared<fem::Form<T, U>>(
fem::create_form<T>(*form_poisson_M, {V}, {{"ui", ui}}, {{}}, {}));
// Define boundary condition
auto u_D = std::make_shared<fem::Function<T, U>>(V);
u_D->interpolate(
[](auto x) -> std::pair<std::vector<T>, std::vector<std::size_t>>
{
std::vector<T> f;
for (std::size_t p = 0; p < x.extent(1); ++p)
f.push_back(1 + x(0, p) * x(0, p) + 2 * x(1, p) * x(1, p));
return {f, {f.size()}};
});
mesh->topology_mutable()->create_connectivity(1, 2);
const std::vector<std::int32_t> facets
= mesh::exterior_facet_indices(*mesh->topology());
std::vector<std::int32_t> bdofs = fem::locate_dofs_topological(
*V->mesh()->topology_mutable(), *V->dofmap(), 1, facets);
auto bc = std::make_shared<const fem::DirichletBC<T>>(u_D, bdofs);
// Assemble RHS vector
la::Vector<T> b(V->dofmap()->index_map, V->dofmap()->index_map_bs());
fem::assemble_vector(b.mutable_array(), *L);
// Apply lifting to account for Dirichlet boundary condition
// b <- b - A * x_bc
fem::set_bc<T, U>(ui->x()->mutable_array(), {bc}, T(-1));
fem::assemble_vector(b.mutable_array(), *M);
// Communicate ghost values
b.scatter_rev(std::plus<T>());
// Set BC dofs to zero (effectively zeroes columns of A)
fem::set_bc<T, U>(b.mutable_array(), {bc}, T(0));
b.scatter_fwd();
// Pack coefficients and constants
auto coeff = fem::allocate_coefficient_storage(*M);
std::vector<T> constants = fem::pack_constants(*M);
// Create function for computing the action of A on x (y = Ax)
auto action = [&M, &ui, &bc, &coeff, &constants](auto& x, auto& y)
{
// Zero y
y.set(0.0);
// Update coefficient ui (just copy data from x to ui)
std::copy(x.array().begin(), x.array().end(),
ui->x()->mutable_array().begin());
// Compute action of A on x
fem::pack_coefficients(*M, coeff);
fem::assemble_vector(y.mutable_array(), *M, std::span<const T>(constants),
fem::make_coefficients_span(coeff));
// Set BC dofs to zero (effectively zeroes rows of A)
fem::set_bc<T, U>(y.mutable_array(), {bc}, T(0));
// Accumulate ghost values
y.scatter_rev(std::plus<T>());
// Update ghost values
y.scatter_fwd();
};
// Compute solution using the CG method
auto u = std::make_shared<fem::Function<T>>(V);
int num_it = linalg::cg(*u->x(), b, action, 200, 1e-6);
// Set BC values in the solution vectors
fem::set_bc<T, U>(u->x()->mutable_array(), {bc}, T(1));
// Compute L2 error (squared) of the solution vector e = (u - u_d, u
// - u_d)*dx
auto E = std::make_shared<fem::Form<T>>(fem::create_form<T, U>(
*form_poisson_E, {}, {{"uexact", u_D}, {"usol", u}}, {}, {}, mesh));
T error = fem::assemble_scalar(*E);
if (dolfinx::MPI::rank(comm) == 0)
{
std::cout << "Number of CG iterations " << num_it << std::endl;
std::cout << "Finite element error (L2 norm (squared)) " << std::abs(error)
<< std::endl;
}
}
/// Main program
int main(int argc, char* argv[])
{
using T = PetscScalar;
using U = typename dolfinx::scalar_value_type_t<T>;
init_logging(argc, argv);
MPI_Init(&argc, &argv);
solver<T, U>(MPI_COMM_WORLD);
MPI_Finalize();
return 0;
}