Note: this is documentation for an old release. View the latest documentation at docs.fenicsproject.org/dolfinx/v0.9.0/cpp/doxygen/d9/d35/classdolfinx_1_1fem_1_1CoordinateElement.html
DOLFINx  0.5.1
DOLFINx C++ interface
Public Types | Public Member Functions | Static Public Member Functions | List of all members
CoordinateElement Class Reference

A CoordinateElement manages coordinate mappings for isoparametric cells. More...

#include <CoordinateElement.h>

Public Types

using mdspan2_t = std::experimental::mdspan< double, std::experimental::dextents< std::size_t, 2 > >
 mdspan typedef
 
using cmdspan2_t = std::experimental::mdspan< const double, std::experimental::dextents< std::size_t, 2 > >
 mdspan typedef
 

Public Member Functions

 CoordinateElement (std::shared_ptr< const basix::FiniteElement > element)
 Create a coordinate element from a Basix element. More...
 
 CoordinateElement (mesh::CellType celltype, int degree, basix::element::lagrange_variant type=basix::element::lagrange_variant::equispaced)
 Create a Lagrange coordinate element. More...
 
virtual ~CoordinateElement ()=default
 Destructor.
 
mesh::CellType cell_shape () const
 Cell shape. More...
 
int degree () const
 The polynomial degree of the element.
 
int dim () const
 The dimension of the geometry element space. More...
 
basix::element::lagrange_variant variant () const
 The variant of the element.
 
std::array< std::size_t, 4 > tabulate_shape (std::size_t nd, std::size_t num_points) const
 Shape of array to fill when calling FiniteElement::tabulate More...
 
void tabulate (int nd, std::span< const double > X, std::array< std::size_t, 2 > shape, std::span< double > basis) const
 Evaluate basis values and derivatives at set of points. More...
 
ElementDofLayout create_dof_layout () const
 Compute and return the dof layout.
 
void pull_back_nonaffine (mdspan2_t X, cmdspan2_t x, cmdspan2_t cell_geometry, double tol=1.0e-8, int maxit=10) const
 Compute reference coordinates X for physical coordinates x for a non-affine map. More...
 
void permute_dofs (const std::span< std::int32_t > &dofs, std::uint32_t cell_perm) const
 Permutes a list of DOF numbers on a cell.
 
void unpermute_dofs (const std::span< std::int32_t > &dofs, std::uint32_t cell_perm) const
 Reverses a DOF permutation.
 
bool needs_dof_permutations () const
 Indicates whether the geometry DOF numbers on each cell need permuting. More...
 
bool is_affine () const noexcept
 Check is geometry map is affine. More...
 

Static Public Member Functions

template<typename U , typename V , typename W >
static void compute_jacobian (const U &dphi, const V &cell_geometry, W &&J)
 Compute Jacobian for a cell with given geometry using the basis functions and first order derivatives. More...
 
template<typename U , typename V >
static void compute_jacobian_inverse (const U &J, V &&K)
 Compute the inverse of the Jacobian. More...
 
template<typename U >
static double compute_jacobian_determinant (const U &J, std::span< typename U::value_type > w)
 Compute the determinant of the Jacobian. More...
 
template<typename U , typename V , typename W >
static void push_forward (U &&x, const V &cell_geometry, const W &phi)
 Compute physical coordinates x for points X in the reference configuration. More...
 
template<typename U , typename V , typename W >
static void pull_back_affine (U &&X, const V &K, const std::array< double, 3 > &x0, const W &x)
 Compute reference coordinates X for physical coordinates x for an affine map. For the affine case, x = J X + x0, and this function computes X = K(x -x0) where K = J^{-1}. More...
 

Detailed Description

A CoordinateElement manages coordinate mappings for isoparametric cells.

Todo:
A dof layout on a reference cell needs to be defined.

Constructor & Destructor Documentation

◆ CoordinateElement() [1/2]

CoordinateElement ( std::shared_ptr< const basix::FiniteElement >  element)
explicit

Create a coordinate element from a Basix element.

Parameters
[in]elementElement from Basix

◆ CoordinateElement() [2/2]

CoordinateElement ( mesh::CellType  celltype,
int  degree,
basix::element::lagrange_variant  type = basix::element::lagrange_variant::equispaced 
)

Create a Lagrange coordinate element.

Parameters
[in]celltypeThe cell shape
[in]degreePolynomial degree of the map
[in]typeThe type of Lagrange element (see Basix documentation for possible types)

Member Function Documentation

◆ cell_shape()

mesh::CellType cell_shape ( ) const

Cell shape.

Returns
The cell shape

◆ compute_jacobian()

static void compute_jacobian ( const U &  dphi,
const V &  cell_geometry,
W &&  J 
)
inlinestatic

Compute Jacobian for a cell with given geometry using the basis functions and first order derivatives.

Parameters
[in]dphiDerivatives of the basis functions (shape=(tdim, num geometry nodes))
[in]cell_geometryThe cell nodes coordinates (shape=(num geometry nodes, gdim))
[out]JThe Jacobian. It must have shape=(gdim, tdim) and must initialized to zero

◆ compute_jacobian_determinant()

static double compute_jacobian_determinant ( const U &  J,
std::span< typename U::value_type >  w 
)
inlinestatic

Compute the determinant of the Jacobian.

Parameters
[in]JJacobian (shape=(gdim, tdim))
[in]wWorking memory, required when gdim != tdim. Size must be at least 2 * gdim * tdim.
Returns
Determinant of J

◆ compute_jacobian_inverse()

static void compute_jacobian_inverse ( const U &  J,
V &&  K 
)
inlinestatic

Compute the inverse of the Jacobian.

Parameters
[in]JThe Jacobian (shape=(gdim, tdim))
[out]KThe Jacobian (shape=(tdim, gdim))

◆ dim()

int dim ( ) const

The dimension of the geometry element space.

The number of basis function is returned. E.g., for a linear triangle cell the dimension will be 3.

Returns
The coordinate element dimension.

◆ is_affine()

bool is_affine ( ) const
inlinenoexcept

Check is geometry map is affine.

Returns
True is geometry map is affine

◆ needs_dof_permutations()

bool needs_dof_permutations ( ) const

Indicates whether the geometry DOF numbers on each cell need permuting.

For higher order geometries (where there is more than one DOF on a subentity of the cell), this will be true.

◆ pull_back_affine()

static void pull_back_affine ( U &&  X,
const V &  K,
const std::array< double, 3 > &  x0,
const W &  x 
)
inlinestatic

Compute reference coordinates X for physical coordinates x for an affine map. For the affine case, x = J X + x0, and this function computes X = K(x -x0) where K = J^{-1}.

Parameters
[out]XThe reference coordinates to compute (shape=(num_points, tdim))
[in]KThe inverse of the geometry Jacobian (shape=(tdim, gdim))
[in]x0The physical coordinate of reference coordinate X0=(0, 0, 0).
[in]xThe physical coordinates (shape=(num_points, gdim))

◆ pull_back_nonaffine()

void pull_back_nonaffine ( mdspan2_t  X,
cmdspan2_t  x,
cmdspan2_t  cell_geometry,
double  tol = 1.0e-8,
int  maxit = 10 
) const

Compute reference coordinates X for physical coordinates x for a non-affine map.

Parameters
[in,out]XThe reference coordinates to compute (shape=(num_points, tdim))
[in]xThe physical coordinates (shape=(num_points, gdim))
[in]cell_geometryThe cell nodes coordinates (shape=(num geometry nodes, gdim))
[in]tolTolerance for termination of Newton method.
[in]maxitMaximum number of Newton iterations
Note
If convergence is not achieved within maxit, the function throws a runtime error.

◆ push_forward()

static void push_forward ( U &&  x,
const V &  cell_geometry,
const W &  phi 
)
inlinestatic

Compute physical coordinates x for points X in the reference configuration.

Parameters
[in,out]xThe physical coordinates of the reference points X (rank 2)
[in]cell_geometryThe cell node physical coordinates (rank 2)
[in]phiTabulated basis functions at reference points X (rank 2)

◆ tabulate()

void tabulate ( int  nd,
std::span< const double >  X,
std::array< std::size_t, 2 >  shape,
std::span< double >  basis 
) const

Evaluate basis values and derivatives at set of points.

Parameters
[in]ndThe order of derivatives, up to and including, to compute. Use 0 for the basis functions only.
[in]XThe points at which to compute the basis functions. The shape of X is (number of points, geometric dimension).
[in]shapeThe shape of X.
[out]basisThe array to fill with the basis function values. The shape can be computed using FiniteElement::tabulate_shape

◆ tabulate_shape()

std::array< std::size_t, 4 > tabulate_shape ( std::size_t  nd,
std::size_t  num_points 
) const

Shape of array to fill when calling FiniteElement::tabulate

Parameters
[in]ndThe order of derivatives, up to and including, to compute. Use 0 for the basis functions only
[in]num_pointsNumber of points at which to evaluate the basis functions
Returns
The shape of the array to be filled by FiniteElement::tabulate

The documentation for this class was generated from the following files: