dolfinx.fem¶
Tools for assembling and manipulating finite element forms
-
class
dolfinx.fem.
Constant
(domain, c: Union[numpy.ndarray, Sequence, float])[source]¶ Bases:
ufl.constant.Constant
A constant with respect to a domain.
- Parameters
domain (DOLFINx or UFL mesh) –
c – Value of the constant.
-
property
value
¶ Returns value of the constant.
-
class
dolfinx.fem.
DirichletBC
(value: Union[ufl.coefficient.Coefficient, dolfinx.fem.function.Function, dolfinx.cpp.fem.Function], dofs: List[int], V: Optional[dolfinx.fem.function.FunctionSpace] = None)[source]¶ Bases:
dolfinx.cpp.fem.DirichletBC
Representation of Dirichlet boundary condition which is imposed on a linear system.
- Parameters
value – Lifted boundary values function.
dofs – Local indices of degrees of freedom in function space to which boundary condition applies. Expects array of size (number of dofs, 2) if function space of the problem,
V
, is passed. Otherwise assumes function space of the problem is the same of function space of boundary values function.V (optional) – Function space of a problem to which boundary conditions are applied.
-
class
dolfinx.fem.
DofMap
(dofmap: dolfinx.cpp.fem.DofMap)[source]¶ Bases:
object
Degree-of-freedom map
This class handles the mapping of degrees of freedom. It builds a dof map based on a ufc_dofmap on a specific mesh.
-
property
bs
¶ Returns the block size of the dofmap
-
cell_dofs
(cell_index: int)[source]¶ Returns the Local-global dof map for the cell (using process-local indices)
- Parameters
cell – The cell index
-
property
dof_layout
¶ Returns the layout of dofs on an element
-
property
index_map
¶ Returns the index map that described the parallel distribution of the dofmap
-
property
index_map_bs
¶ Returns the block size of the index map
-
property
list
¶ Returns the adjacency list with dof indices for each cell
-
property
-
class
dolfinx.fem.
Expression
(ufl_expression: ufl.core.expr.Expr, x: numpy.ndarray, form_compiler_parameters: dict = {}, jit_parameters: dict = {})[source]¶ Bases:
object
Create DOLFINx Expression.
Represents a mathematical expression evaluated at a pre-defined set of points on the reference cell. This class closely follows the concept of a UFC Expression.
This functionality can be used to evaluate a gradient of a Function at the quadrature points in all cells. This evaluated gradient can then be used as input to a non-FEniCS function that calculates a material constitutive model.
- Parameters
ufl_expression – Pure UFL expression
x – Array of points of shape (num_points, tdim) on the reference element.
form_compiler_parameters – Parameters used in FFCx compilation of this Expression. Run ffcx –help in the commandline to see all available options.
jit_parameters – Parameters controlling JIT compilation of C code.
Note
This wrapper is responsible for the FFCx compilation of the UFL Expr and attaching the correct data to the underlying C++ Expression.
-
eval
(cells: numpy.ndarray, u: Optional[numpy.ndarray] = None) → numpy.ndarray[source]¶ Evaluate Expression in cells.
- Parameters
cells – local indices of cells to evaluate expression.
u (optional) – array of shape (num_cells, num_points*value_size) to store result of expression evaluation.
- Returns
u – The i-th row of u contains the expression evaluated on cells[i].
- Return type
np.ndarray
Note
This function allocates u of the appropriate size if u is not passed.
-
property
num_points
¶ Return the number of evaluation points on the reference cell.
-
property
ufl_expression
¶ Return the original UFL Expression
-
property
value_size
¶ Return the value size of the expression
-
property
x
¶ Return the evaluation points on the reference cell
-
class
dolfinx.fem.
Form
(form: ufl.form.Form, form_compiler_parameters: dict = {}, jit_parameters: dict = {})[source]¶ Bases:
object
Create DOLFINx Form
- Parameters
Note
This wrapper for UFL form is responsible for the actual FFCx compilation and attaching coefficients and domains specific data to the underlying C++ Form.
-
class
dolfinx.fem.
Function
(V: dolfinx.fem.function.FunctionSpace, x: Optional[dolfinx.cpp.la.Vector] = None, name: Optional[str] = None)[source]¶ Bases:
ufl.coefficient.Coefficient
A finite element function that is represented by a function space (domain, element and dofmap) and a vector holding the degrees-of-freedom
Initialize finite element Function.
-
copy
()[source]¶ Return a copy of the Function. The FunctionSpace is shared and the degree-of-freedom vector is copied.
-
eval
(x: numpy.ndarray, cells: numpy.ndarray, u=None) → numpy.ndarray[source]¶ Evaluate Function at points x, where x has shape (num_points, 3), and cells has shape (num_points,) and cell[i] is the index of the cell containing point x[i]. If the cell index is negative the point is ignored.
-
property
function_space
¶ Return the FunctionSpace
-
property
id
¶ Return object id index.
-
property
name
¶ Name of the Function.
-
split
()[source]¶ Extract any sub functions.
A sub function can be extracted from a discrete function that is in a mixed, vector, or tensor FunctionSpace. The sub function resides in the subspace of the mixed space.
-
sub
(i: int)[source]¶ Return a sub function.
The sub functions are numbered from i = 0..N-1, where N is the total number of sub spaces.
-
property
vector
¶ Return the vector holding Function degrees-of-freedom.
-
property
x
¶ Return the vector holding Function degrees-of-freedom.
-
-
class
dolfinx.fem.
FunctionSpace
(mesh: dolfinx.cpp.mesh.Mesh, element: Union[ufl.finiteelement.finiteelementbase.FiniteElementBase, dolfinx.fem.function.ElementMetaData], cppV: Optional[dolfinx.cpp.fem.FunctionSpace] = None, form_compiler_parameters: dict = {}, jit_parameters: dict = {})[source]¶ Bases:
ufl.functionspace.FunctionSpace
A space on which Functions (fields) can be defined.
Create a finite element function space.
-
clone
() → dolfinx.fem.function.FunctionSpace[source]¶ Return a new FunctionSpace \(W\) which shares data with this FunctionSpace \(V\), but with a different unique integer ID.
This function is helpful for defining mixed problems and using blocked linear algebra. For example, a matrix block defined on the spaces \(V \times W\) where, \(V\) and \(W\) are defined on the same finite element and mesh can be identified as an off-diagonal block whereas the \(V \times V\) and \(V \times V\) matrices can be identified as diagonal blocks. This is relevant for the handling of boundary conditions.
-
collapse
(collapsed_dofs: bool = False)[source]¶ - Collapse a subspace and return a new function space and a map from
new to old dofs.
- Arguments
- collapsed_dofs
Return the map from new to old dofs
- Returns
- FunctionSpace
The new function space.
- dict
The map from new to old dofs (optional)
-
contains
(V) → bool[source]¶ Check whether a FunctionSpace is in this FunctionSpace, or is the same as this FunctionSpace.
-
property
dofmap
¶ Return the degree-of-freedom map associated with the function space.
-
property
element
¶
-
property
id
¶ The unique identifier
-
property
mesh
¶ Return the mesh on which the function space is defined.
-
-
class
dolfinx.fem.
IntegralType
(self: dolfinx.cpp.fem.IntegralType, value: int) → None¶ Bases:
pybind11_builtins.pybind11_object
Members:
cell
exterior_facet
interior_facet
vertex
-
cell
= <IntegralType.cell: 0>¶
-
exterior_facet
= <IntegralType.exterior_facet: 1>¶
-
interior_facet
= <IntegralType.interior_facet: 2>¶
-
property
name
¶
-
property
value
¶
-
vertex
= <IntegralType.vertex: 3>¶
-
-
class
dolfinx.fem.
LinearProblem
(a: ufl.form.Form, L: ufl.form.Form, bcs: List[dolfinx.fem.dirichletbc.DirichletBC] = [], u: Optional[dolfinx.fem.function.Function] = None, petsc_options={}, form_compiler_parameters={}, jit_parameters={})[source]¶ Bases:
object
Class for solving a linear variational problem of the form a(u, v) = L(v) for all v using PETSc as a linear algebra backend.
Initialize solver for a linear variational problem.
- Parameters
a – A bilinear UFL form, the left hand side of the variational problem.
L – A linear UFL form, the right hand side of the variational problem.
bcs – A list of Dirichlet boundary conditions.
u – The solution function. It will be created if not provided.
petsc_options – Parameters that is passed to the linear algebra backend PETSc. For available choices for the ‘petsc_options’ kwarg, see the PETSc-documentation <https://www.mcs.anl.gov/petsc/documentation/index.html>.
form_compiler_parameters – Parameters used in FFCx compilation of this form. Run ffcx –help at the commandline to see all available options. Takes priority over all other parameter values, except for scalar_type which is determined by DOLFINx.
jit_parameters – Parameters used in CFFI JIT compilation of C code generated by FFCx. See python/dolfinx/jit.py for all available parameters. Takes priority over all other parameter values.
code-block: (.) – python: problem = LinearProblem(a, L, [bc0, bc1], petsc_options={“ksp_type”: “preonly”, “pc_type”: “lu”})
-
property
A
¶ Get the matrix operator
-
property
L
¶ Get the compiled linear form
-
property
a
¶ Get the compiled bilinear form
-
property
b
¶ Get the RHS vector
-
property
solver
¶ Get the linear solver
-
class
dolfinx.fem.
NonlinearProblem
(F: ufl.form.Form, u: dolfinx.fem.function.Function, bcs: List[dolfinx.fem.dirichletbc.DirichletBC] = [], J: Optional[ufl.form.Form] = None, form_compiler_parameters={}, jit_parameters={})[source]¶ Bases:
object
Nonlinear problem class for solving the non-linear problem F(u, v) = 0 for all v in V
Initialize class that sets up structures for solving the non-linear problem using Newton’s method, dF/du(u) du = -F(u)
- Parameters
F – The PDE residual F(u, v)
u – The unknown
bcs – List of Dirichlet boundary conditions
J – UFL representation of the Jacobian (Optional)
form_compiler_parameters – Parameters used in FFCX compilation of this form. Run ffcx –help at the commandline to see all available options. Takes priority over all other parameter values, except for scalar_type which is determined by DOLFINX.
jit_parameters – Parameters used in CFFI JIT compilation of C code generated by FFCX. See python/dolfinx/jit.py for all available parameters. Takes priority over all other parameter values.
code-block: (.) – python: problem = LinearProblem(F, u, [bc0, bc1])
-
F
(x: petsc4py.PETSc.Vec, b: petsc4py.PETSc.Vec)[source]¶ Assemble the residual F into the vector b. :param x: The vector containing the latest solution :param b: Vector to assemble the residual into
-
J
(x: petsc4py.PETSc.Vec, A: petsc4py.PETSc.Mat)[source]¶ Assemble the Jacobian matrix. :param x: The vector containing the latest solution :param A: The matrix to assemble the Jacobian into
-
property
L
¶ Get the compiled linear form (the residual)
-
property
a
¶ Get the compiled bilinear form (the Jacobian)
-
dolfinx.fem.
TensorFunctionSpace
(mesh: dolfinx.cpp.mesh.Mesh, element: dolfinx.fem.function.ElementMetaData, shape=None, symmetry: Optional[bool] = None, restriction=None) → dolfinx.fem.function.FunctionSpace[source]¶ Create tensor finite element (composition of scalar elements) function space.
-
dolfinx.fem.
VectorFunctionSpace
(mesh: dolfinx.cpp.mesh.Mesh, element: dolfinx.fem.function.ElementMetaData, dim=None, restriction=None) → dolfinx.fem.function.FunctionSpace[source]¶ Create vector finite element (composition of scalar elements) function space.
-
dolfinx.fem.
adjoint
(form: ufl.form.Form, reordered_arguments=None) → ufl.form.Form[source]¶ Compute adjoint of a bilinear form by changing the ordering (count) of the test and trial functions.
The functions wraps
ufl.adjoint
, and by default UFL will create newArgument
s. To specify theArgument
s rather than creating new ones, pass a tuple ofArgument
s asreordered_arguments
. See the documentation forufl.adjoint
for more details.
-
dolfinx.fem.
apply_lifting
(b: petsc4py.PETSc.Vec, a: List[Union[dolfinx.fem.form.Form, dolfinx.cpp.fem.Form]], bcs: List[List[dolfinx.fem.dirichletbc.DirichletBC]], x0: Optional[List[petsc4py.PETSc.Vec]] = [], scale: float = 1.0) → None[source]¶ Modify RHS vector b for lifting of Dirichlet boundary conditions. It modifies b such that:
b <- b - scale * A_j (g_j - x0_j)
where j is a block (nest) index. For a non-blocked problem j = 0. The boundary conditions bcs are on the trial spaces V_j. The forms in [a] must have the same test space as L (from which b was built), but the trial space may differ. If x0 is not supplied, then it is treated as zero.
Ghost contributions are not accumulated (not sent to owner). Caller is responsible for calling VecGhostUpdateBegin/End.
-
dolfinx.fem.
apply_lifting_nest
(b: petsc4py.PETSc.Vec, a: List[List[Union[dolfinx.fem.form.Form, dolfinx.cpp.fem.Form]]], bcs: List[dolfinx.fem.dirichletbc.DirichletBC], x0: Optional[petsc4py.PETSc.Vec] = None, scale: float = 1.0) → petsc4py.PETSc.Vec[source]¶ Modify nested vector for lifting of Dirichlet boundary conditions.
-
dolfinx.fem.
assemble_matrix
(a: Union[dolfinx.fem.form.Form, dolfinx.cpp.fem.Form], bcs: List[dolfinx.fem.dirichletbc.DirichletBC] = [], diagonal: float = 1.0) → petsc4py.PETSc.Mat[source]¶ -
dolfinx.fem.
assemble_matrix
(A: petsc4py.PETSc.Mat, a: Union[dolfinx.fem.form.Form, dolfinx.cpp.fem.Form], bcs: List[dolfinx.fem.dirichletbc.DirichletBC] = [], diagonal: float = 1.0) → petsc4py.PETSc.Mat Assemble bilinear form into a matrix. The returned matrix is not finalised, i.e. ghost values are not accumulated.
-
dolfinx.fem.
assemble_matrix_block
(a: List[List[Union[dolfinx.fem.form.Form, dolfinx.cpp.fem.Form]]], bcs: List[dolfinx.fem.dirichletbc.DirichletBC] = [], diagonal: float = 1.0) → petsc4py.PETSc.Mat[source]¶ -
dolfinx.fem.
assemble_matrix_block
(A: petsc4py.PETSc.Mat, a: List[List[Union[dolfinx.fem.form.Form, dolfinx.cpp.fem.Form]]], bcs: List[dolfinx.fem.dirichletbc.DirichletBC] = [], diagonal: float = 1.0) → petsc4py.PETSc.Mat Assemble bilinear forms into matrix
-
dolfinx.fem.
assemble_matrix_nest
(a: List[List[Union[dolfinx.fem.form.Form, dolfinx.cpp.fem.Form]]], bcs: List[dolfinx.fem.dirichletbc.DirichletBC] = [], mat_types=[], diagonal: float = 1.0) → petsc4py.PETSc.Mat[source]¶ -
dolfinx.fem.
assemble_matrix_nest
(A: petsc4py.PETSc.Mat, a: List[List[Union[dolfinx.fem.form.Form, dolfinx.cpp.fem.Form]]], bcs: List[dolfinx.fem.dirichletbc.DirichletBC] = [], diagonal: float = 1.0) → petsc4py.PETSc.Mat Assemble bilinear forms into matrix
-
dolfinx.fem.
assemble_scalar
(M: Union[dolfinx.fem.form.Form, dolfinx.cpp.fem.Form]) → numpy.float64[source]¶ Assemble functional. The returned value is local and not accumulated across processes.
-
dolfinx.fem.
assemble_vector
(L: Union[dolfinx.fem.form.Form, dolfinx.cpp.fem.Form]) → petsc4py.PETSc.Vec[source]¶ -
dolfinx.fem.
assemble_vector
(b: petsc4py.PETSc.Vec, L: Union[dolfinx.fem.form.Form, dolfinx.cpp.fem.Form]) → petsc4py.PETSc.Vec Assemble linear form into a new PETSc vector. The returned vector is not finalised, i.e. ghost values are not accumulated on the owning processes.
-
dolfinx.fem.
assemble_vector_block
(L: List[Union[dolfinx.fem.form.Form, dolfinx.cpp.fem.Form]], a: List[List[Union[dolfinx.fem.form.Form, dolfinx.cpp.fem.Form]]], bcs: List[dolfinx.fem.dirichletbc.DirichletBC] = [], x0: Optional[petsc4py.PETSc.Vec] = None, scale: float = 1.0) → petsc4py.PETSc.Vec[source]¶ -
dolfinx.fem.
assemble_vector_block
(b: petsc4py.PETSc.Vec, L: List[Union[dolfinx.fem.form.Form, dolfinx.cpp.fem.Form]], a, bcs: List[dolfinx.fem.dirichletbc.DirichletBC] = [], x0: Optional[petsc4py.PETSc.Vec] = None, scale: float = 1.0) → petsc4py.PETSc.Vec Assemble linear forms into a monolithic vector. The vector is not finalised, i.e. ghost values are not accumulated.
-
dolfinx.fem.
assemble_vector_nest
(L: Union[dolfinx.fem.form.Form, dolfinx.cpp.fem.Form]) → petsc4py.PETSc.Vec[source]¶ -
dolfinx.fem.
assemble_vector_nest
(b: petsc4py.PETSc.Vec, L: List[Union[dolfinx.fem.form.Form, dolfinx.cpp.fem.Form]]) → petsc4py.PETSc.Vec Assemble linear forms into a new nested PETSc (VecNest) vector. The returned vector is not finalised, i.e. ghost values are not accumulated on the owning processes.
-
dolfinx.fem.
create_matrix
(a: Union[dolfinx.fem.form.Form, dolfinx.cpp.fem.Form], mat_type=None) → petsc4py.PETSc.Mat[source]¶
-
dolfinx.fem.
create_matrix_block
(a: List[List[Union[dolfinx.fem.form.Form, dolfinx.cpp.fem.Form]]]) → petsc4py.PETSc.Mat[source]¶
-
dolfinx.fem.
create_matrix_nest
(a: List[List[Union[dolfinx.fem.form.Form, dolfinx.cpp.fem.Form]]]) → petsc4py.PETSc.Mat[source]¶
-
dolfinx.fem.
create_vector
(L: Union[dolfinx.fem.form.Form, dolfinx.cpp.fem.Form]) → petsc4py.PETSc.Vec[source]¶
-
dolfinx.fem.
create_vector_block
(L: List[Union[dolfinx.fem.form.Form, dolfinx.cpp.fem.Form]]) → petsc4py.PETSc.Vec[source]¶
-
dolfinx.fem.
create_vector_nest
(L: List[Union[dolfinx.fem.form.Form, dolfinx.cpp.fem.Form]]) → petsc4py.PETSc.Vec[source]¶
-
dolfinx.fem.
locate_dofs_geometrical
(V: Iterable[Union[dolfinx.cpp.fem.FunctionSpace, dolfinx.fem.function.FunctionSpace]], marker: function)[source]¶ Locate degrees-of-freedom geometrically using a marker function.
- Parameters
V – Function space(s) in which to search for degree-of-freedom indices.
marker – A function that takes an array of points
x
with shape(gdim, num_points)
and returns an array of booleans of lengthnum_points
, evaluating toTrue
for entities whose degree-of-freedom should be returned.
- Returns
An array of degree-of-freedom indices (local to the process) for degrees-of-freedom whose coordinate evaluates to True for the marker function.
If
V
is a list of two function spaces, then a 2-D array of shape (number of dofs, 2) is returned.Returned degree-of-freedom indices are unique and ordered by the first column.
- Return type
numpy.ndarray
-
dolfinx.fem.
locate_dofs_topological
(V: Iterable[Union[dolfinx.cpp.fem.FunctionSpace, dolfinx.fem.function.FunctionSpace]], entity_dim: int, entities: List[int], remote: bool = True)[source]¶ Locate degrees-of-freedom belonging to mesh entities topologically.
- Parameters
V – Function space(s) in which to search for degree-of-freedom indices.
entity_dim – Topological dimension of entities where degrees-of-freedom are located.
entities – Indices of mesh entities of dimension
entity_dim
where degrees-of-freedom are located.remote (True) – True to return also “remotely located” degree-of-freedom indices.
- Returns
An array of degree-of-freedom indices (local to the process) for degrees-of-freedom topologically belonging to mesh entities.
If
V
is a list of two function spaces, then a 2-D array of shape (number of dofs, 2) is returned.Returned degree-of-freedom indices are unique and ordered by the first column.
- Return type
numpy.ndarray
-
dolfinx.fem.
set_bc
(b: petsc4py.PETSc.Vec, bcs: List[dolfinx.fem.dirichletbc.DirichletBC], x0: Optional[petsc4py.PETSc.Vec] = None, scale: float = 1.0) → None[source]¶ Insert boundary condition values into vector. Only local (owned) entries are set, hence communication after calling this function is not required unless ghost entries need to be updated to the boundary condition value.
-
dolfinx.fem.
set_bc_nest
(b: petsc4py.PETSc.Vec, bcs: List[List[dolfinx.fem.dirichletbc.DirichletBC]], x0: Optional[petsc4py.PETSc.Vec] = None, scale: float = 1.0) → None[source]¶ Insert boundary condition values into nested vector. Only local (owned) entries are set, hence communication after calling this function is not required unless the ghost entries need to be updated to the boundary condition value.