# Copyright (C) 2021 Jørgen S. Dokken
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier: LGPL-3.0-or-later
"""Methods for solving nonlinear equations using PETSc solvers."""
from __future__ import annotations
import typing
if typing.TYPE_CHECKING:
from mpi4py import MPI
from petsc4py import PETSc
import dolfinx
assert dolfinx.has_petsc4py
from dolfinx.fem.problem import NonlinearProblem
import types
from dolfinx import cpp as _cpp
from dolfinx import fem
from dolfinx.fem.petsc import create_matrix, create_vector
__all__ = ["NewtonSolver"]
[docs]
class NewtonSolver(_cpp.nls.petsc.NewtonSolver):
def __init__(self, comm: MPI.Intracomm, problem: NonlinearProblem):
"""A Newton solver for non-linear problems."""
super().__init__(comm)
# Create matrix and vector to be used for assembly
# of the non-linear problem
self._A = create_matrix(problem.a)
self.setJ(problem.J, self._A)
self._b = create_vector(problem.L)
self.setF(problem.F, self._b)
self.set_form(problem.form)
def __del__(self):
self._A.destroy()
self._b.destroy()
[docs]
def solve(self, u: fem.Function):
"""Solve non-linear problem into function u. Returns the number
of iterations and if the solver converged."""
n, converged = super().solve(u.x.petsc_vec)
u.x.scatter_forward()
return n, converged
@property
def A(self) -> PETSc.Mat: # type: ignore
"""Jacobian matrix"""
return self._A
@property
def b(self) -> PETSc.Vec: # type: ignore
"""Residual vector"""
return self._b
[docs]
def setP(self, P: types.FunctionType, Pmat: PETSc.Mat): # type: ignore
"""
Set the function for computing the preconditioner matrix
Args:
P: Function to compute the preconditioner matrix
Pmat: Matrix to assemble the preconditioner into
"""
super().setP(P, Pmat)