Source code for dolfinx.mesh

# Copyright (C) 2017-2021 Chris N. Richardson and Garth N. Wells
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier:    LGPL-3.0-or-later
"""Creation, refining and marking of meshes"""

from __future__ import annotations

import typing

import numpy as np
import numpy.typing as npt

import basix
import basix.ufl
import ufl
from dolfinx import cpp as _cpp
from dolfinx.cpp.mesh import (CellType, DiagonalType, GhostMode,
                              build_dual_graph, cell_dim,
                              create_cell_partitioner, exterior_facet_indices,
                              to_string, to_type)
from dolfinx.cpp.refinement import RefinementOption

from mpi4py import MPI as _MPI

__all__ = ["meshtags_from_entities", "locate_entities", "locate_entities_boundary",
           "refine", "create_mesh", "Mesh", "MeshTags", "meshtags", "CellType",
           "GhostMode", "build_dual_graph", "cell_dim", "compute_midpoints",
           "exterior_facet_indices", "compute_incident_entities", "create_cell_partitioner",
           "create_interval", "create_unit_interval", "create_rectangle", "create_unit_square",
           "create_box", "create_unit_cube", "to_type", "to_string"]


[docs]def compute_incident_entities(topology, entities: npt.NDArray[np.int32], d0: int, d1: int): return _cpp.mesh.compute_incident_entities(topology, entities, d0, d1)
[docs]def compute_midpoints(mesh: Mesh, dim: int, entities: npt.NDArray[np.int32]): return _cpp.mesh.compute_midpoints(mesh._cpp_object, dim, entities)
[docs]class Mesh: def __init__(self, mesh: _cpp.mesh.Mesh, domain: ufl.Mesh): """A class for representing meshes Args: mesh: The C++ mesh object domain: The UFL domain Note: Mesh objects should not usually be created using this class directly. """ self._cpp_object = mesh self._ufl_domain = domain self._ufl_domain._ufl_cargo = self._cpp_object @property def comm(self): return self._cpp_object.comm @property def name(self): return self._cpp_object.name @name.setter def name(self, value): self._cpp_object.name = value
[docs] def ufl_cell(self) -> ufl.Cell: """Return the UFL cell type""" return ufl.Cell(self.topology.cell_name(), geometric_dimension=self.geometry.dim)
[docs] def ufl_domain(self) -> ufl.Mesh: """Return the ufl domain corresponding to the mesh.""" return self._ufl_domain
[docs] def basix_cell(self) -> ufl.Cell: """Return the Basix cell type.""" return getattr(basix.CellType, self.topology.cell_name())
[docs] def h(self, dim: int, entities: npt.NDArray[np.int32]) -> npt.NDArray[np.float64]: """Size measure for each cell.""" return _cpp.mesh.h(self._cpp_object, dim, entities)
@property def topology(self): return self._cpp_object.topology @property def geometry(self): return self._cpp_object.geometry
[docs]def locate_entities(mesh: Mesh, dim: int, marker: typing.Callable) -> np.ndarray: """Compute mesh entities satisfying a geometric marking function Args: mesh: Mesh to locate entities on dim: Topological dimension of the mesh entities to consider marker: A function that takes an array of points `x` with shape `(gdim, num_points)` and returns an array of booleans of length `num_points`, evaluating to `True` for entities to be located. Returns: Indices (local to the process) of marked mesh entities. """ return _cpp.mesh.locate_entities(mesh._cpp_object, dim, marker)
[docs]def locate_entities_boundary(mesh: Mesh, dim: int, marker: typing.Callable) -> np.ndarray: """Compute mesh entities that are connected to an owned boundary facet and satisfy a geometric marking function For vertices and edges, in parallel this function will not necessarily mark all entities that are on the exterior boundary. For example, it is possible for a process to have a vertex that lies on the boundary without any of the attached facets being a boundary facet. When used to find degrees-of-freedom, e.g. using fem.locate_dofs_topological, the function that uses the data returned by this function must typically perform some parallel communication. Args: mesh: Mesh to locate boundary entities on dim: Topological dimension of the mesh entities to consider marker: Function that takes an array of points `x` with shape `(gdim, num_points)` and returns an array of booleans of length `num_points`, evaluating to `True` for entities to be located. Returns: Indices (local to the process) of marked mesh entities. """ return _cpp.mesh.locate_entities_boundary(mesh._cpp_object, dim, marker)
_uflcell_to_dolfinxcell = { "interval": CellType.interval, "interval2D": CellType.interval, "interval3D": CellType.interval, "triangle": CellType.triangle, "triangle3D": CellType.triangle, "quadrilateral": CellType.quadrilateral, "quadrilateral3D": CellType.quadrilateral, "tetrahedron": CellType.tetrahedron, "hexahedron": CellType.hexahedron } def transfer_meshtag(meshtag: MeshTags, mesh1: Mesh, parent_cell: npt.NDArray[np.int32], parent_facet: typing.Optional[npt.NDArray[np.int8]] = None) -> MeshTags: """Generate cell mesh tags on a refined mesh from the mesh tags on the coarse parent mesh. Args: meshtag: Mesh tags on the coarse, parent mesh mesh1: The refined mesh parent_cell: Index of the parent cell for each cell in the refined mesh parent_facet: Index of the local parent facet for each cell in the refined mesh. Only required for transfer tags on facets. Returns: Mesh tags on the refined mesh. """ if meshtag.dim == meshtag.topology.dim: mt = _cpp.refinement.transfer_cell_meshtag(meshtag._cpp_object, mesh1.topology, parent_cell) return MeshTags(mt) elif meshtag.dim == meshtag.topology.dim - 1: assert parent_facet is not None mt = _cpp.refinement.transfer_facet_meshtag(meshtag._cpp_object, mesh1.topology, parent_cell, parent_facet) return MeshTags(mt) else: raise RuntimeError("MeshTag transfer is supported on on cells or facets.")
[docs]def refine(mesh: Mesh, edges: typing.Optional[np.ndarray] = None, redistribute: bool = True) -> Mesh: """Refine a mesh. Args: mesh: Mesh from which to create the refined mesh. edges: Indices of edges to split during refinement. If `None`, uniform refinement is uses. redistribute: Refined mesh is re-partitioned if `True` Returns: Refined mesh """ if edges is None: mesh1 = _cpp.refinement.refine(mesh._cpp_object, redistribute) else: mesh1 = _cpp.refinement.refine(mesh._cpp_object, edges, redistribute) element = mesh._ufl_domain.ufl_coordinate_element() domain = ufl.Mesh(element) return Mesh(mesh1, domain)
def refine_plaza(mesh: Mesh, edges: typing.Optional[np.ndarray] = None, redistribute: bool = True, option: RefinementOption = RefinementOption.none) -> tuple[Mesh, npt.NDArray[np.int32], npt.NDArray[np.int32]]: """Refine a mesh. Args: mesh: Mesh from which to create the refined mesh. edges: Indices of edges to split during refinement. If `None`, uniform refinement is uses. redistribute: Refined mesh is re-partitioned if `True` option: Control computation of the parent-refined mesh data. Returns: Refined mesh, list of parent cell for each refine cell, and list of parent facets. """ if edges is None: mesh1, cells, facets = _cpp.refinement.refine_plaza(mesh._cpp_object, redistribute) else: mesh1, cells, facets = _cpp.refinement.refine_plaza(mesh._cpp_object, edges, redistribute) element = mesh._ufl_domain.ufl_coordinate_element() domain = ufl.Mesh(element) return Mesh(mesh1, domain), cells, facets
[docs]def create_mesh(comm: _MPI.Comm, cells: typing.Union[np.ndarray, _cpp.graph.AdjacencyList_int64], x: np.ndarray, domain: ufl.Mesh, partitioner=_cpp.mesh.create_cell_partitioner(GhostMode.none)) -> Mesh: """Create a mesh from topology and geometry arrays. Args: comm: MPI communicator to define the mesh on. cells: Cells of the mesh. `cells[i]` is the 'nodes' of cell `i`. x: Mesh geometry ('node' coordinates), with shape ``(num_nodes, gdim)`` domain: UFL mesh. ghost_mode: The ghost mode used in the mesh partitioning. partitioner: Function that computes the parallel distribution of cells across MPI ranks. Returns: A mesh. """ ufl_element = domain.ufl_coordinate_element() cell_shape = ufl_element.cell().cellname() cell_degree = ufl_element.degree() try: variant = ufl_element.lagrange_variant except AttributeError: variant = basix.LagrangeVariant.unset x = np.asarray(x, order='C') if x.dtype == np.float32: cmap = _cpp.fem.CoordinateElement_float32(_uflcell_to_dolfinxcell[cell_shape], cell_degree, variant) elif x.dtype == np.float64: cmap = _cpp.fem.CoordinateElement_float64(_uflcell_to_dolfinxcell[cell_shape], cell_degree, variant) try: mesh = _cpp.mesh.create_mesh(comm, cells, cmap, x, partitioner) except TypeError: mesh = _cpp.mesh.create_mesh(comm, _cpp.graph.AdjacencyList_int64(np.cast['int64'](cells)), cmap, x, partitioner) return Mesh(mesh, domain)
def create_submesh(msh, dim, entities): submsh, entity_map, vertex_map, geom_map = _cpp.mesh.create_submesh(msh._cpp_object, dim, entities) assert len(submsh.geometry.cmaps) == 1 submsh_ufl_cell = ufl.Cell(submsh.topology.cell_name(), geometric_dimension=submsh.geometry.dim) submsh_domain = ufl.Mesh(basix.ufl.element( "Lagrange", submsh_ufl_cell.cellname(), submsh.geometry.cmaps[0].degree, submsh.geometry.cmaps[0].variant, shape=(submsh.geometry.dim, ), gdim=submsh.geometry.dim)) return (Mesh(submsh, submsh_domain), entity_map, vertex_map, geom_map)
[docs]class MeshTags: def __init__(self, meshtags): """Mesh tags associate data (markers) with a subset of mesh entities of a given dimension. Args: meshtags: C++ mesh tags object. Note: MeshTags objects should not usually be created using this initializer directly. A Python mesh is passed to the initializer as it may have UFL data attached that is not attached the C++ Mesh that is associated with the C++ `meshtags` object. If `mesh` is passed, `mesh` and `meshtags` must share the same C++ mesh. """ self._cpp_object = meshtags
[docs] def ufl_id(self) -> int: return id(self)
@property def topology(self) -> _cpp.mesh.Topology: """Mesh topology with which the the tags are associated.""" return self._cpp_object.topology @property def dim(self) -> int: """Topological dimension of the tagged entities.""" return self._cpp_object.dim @property def indices(self) -> npt.NDArray[np.int32]: """Indices of tagged mesh entities.""" return self._cpp_object.indices @property def values(self): """Values associated with tagged mesh entities.""" return self._cpp_object.values @property def name(self) -> str: return self._cpp_object.name @name.setter def name(self, value): self._cpp_object.name = value
[docs] def find(self, value) -> npt.NDArray[np.int32]: """Get a list of all entity indices with a given value. Args: value: Mesh tag value to search for Return: Indices of entities with tag `value` """ return self._cpp_object.find(value)
[docs]def meshtags(mesh: Mesh, dim: int, entities: npt.NDArray[np.int32], values: typing.Union[np.ndarray, int, float]) -> MeshTags: """Create a MeshTags object that associates data with a subset of mesh entities. Args: mesh: The mesh dim: Topological dimension of the mesh entity entities: Indices (local to process) of entities to associate values with. The array must be sorted and must not contain duplicates. values: The corresponding value for each entity Returns: A MeshTags object Note: The type of the returned MeshTags is inferred from the type of ``values``. """ if isinstance(values, int): assert np.can_cast(values, np.int32) values = np.full(entities.shape, values, dtype=np.int32) elif isinstance(values, float): values = np.full(entities.shape, values, dtype=np.double) values = np.asarray(values) if values.dtype == np.int8: ftype = _cpp.mesh.MeshTags_int8 elif values.dtype == np.int32: ftype = _cpp.mesh.MeshTags_int32 elif values.dtype == np.int64: ftype = _cpp.mesh.MeshTags_int64 elif values.dtype == np.float64: ftype = _cpp.mesh.MeshTags_float64 else: raise NotImplementedError(f"Type {values.dtype} not supported.") return MeshTags(ftype(mesh.topology, dim, np.asarray(entities, dtype=np.int32), values))
[docs]def meshtags_from_entities(mesh: Mesh, dim: int, entities: _cpp.graph.AdjacencyList_int32, values: npt.NDArray[typing.Any]): """Create a MeshTags object that associates data with a subset of mesh entities, where the entities are defined by their vertices. Args: mesh: The mesh dim: Topological dimension of the mesh entity entities: Entities to associated values with, with entities defined by their vertices values: The corresponding value for each entity Returns: A MeshTags object Note: The type of the returned MeshTags is inferred from the type of ``values``. """ if isinstance(values, int): assert np.can_cast(values, np.int32) values = np.full(entities.num_nodes, values, dtype=np.int32) elif isinstance(values, float): values = np.full(entities.num_nodes, values, dtype=np.double) values = np.asarray(values) return MeshTags(_cpp.mesh.create_meshtags(mesh.topology, dim, entities, values))
[docs]def create_interval(comm: _MPI.Comm, nx: int, points: npt.ArrayLike, ghost_mode=GhostMode.shared_facet, partitioner=None) -> Mesh: """Create an interval mesh. Args: comm: MPI communicator nx: Number of cells points: Coordinates of the end points ghost_mode: Ghost mode used in the mesh partitioning. Options are `GhostMode.none' and `GhostMode.shared_facet`. partitioner: Partitioning function to use for determining the parallel distribution of cells across MPI ranks Returns: An interval mesh """ if partitioner is None: partitioner = _cpp.mesh.create_cell_partitioner(ghost_mode) domain = ufl.Mesh(basix.ufl.element("Lagrange", "interval", 1, rank=1)) mesh = _cpp.mesh.create_interval_float64(comm, nx, points, ghost_mode, partitioner) return Mesh(mesh, domain)
[docs]def create_unit_interval(comm: _MPI.Comm, nx: int, ghost_mode=GhostMode.shared_facet, partitioner=None) -> Mesh: """Create a mesh on the unit interval. Args: comm: MPI communicator nx: Number of cells points: Coordinates of the end points ghost_mode: Ghost mode used in the mesh partitioning. Options are `GhostMode.none' and `GhostMode.shared_facet`. partitioner: Partitioning function to use for determining the parallel distribution of cells across MPI ranks Returns: A unit interval mesh with end points at 0 and 1 """ if partitioner is None: partitioner = _cpp.mesh.create_cell_partitioner(ghost_mode) return create_interval(comm, nx, [0.0, 1.0], ghost_mode, partitioner)
[docs]def create_rectangle(comm: _MPI.Comm, points: npt.ArrayLike, n: npt.ArrayLike, cell_type=CellType.triangle, ghost_mode=GhostMode.shared_facet, partitioner=None, diagonal: DiagonalType = DiagonalType.right) -> Mesh: """Create a rectangle mesh. Args: comm: MPI communicator points: Coordinates of the lower-left and upper-right corners of the rectangle n: Number of cells in each direction cell_type: Mesh cell type ghost_mode: Ghost mode used in the mesh partitioning partitioner: Function that computes the parallel distribution of cells across MPI ranks diagonal: Direction of diagonal of triangular meshes. The options are ``left``, ``right``, ``crossed``, ``left/right``, ``right/left``. Returns: A mesh of a rectangle """ if partitioner is None: partitioner = _cpp.mesh.create_cell_partitioner(ghost_mode) domain = ufl.Mesh(basix.ufl.element("Lagrange", cell_type.name, 1, rank=1)) mesh = _cpp.mesh.create_rectangle_float64(comm, points, n, cell_type, partitioner, diagonal) return Mesh(mesh, domain)
[docs]def create_unit_square(comm: _MPI.Comm, nx: int, ny: int, cell_type=CellType.triangle, ghost_mode=GhostMode.shared_facet, partitioner=None, diagonal: DiagonalType = DiagonalType.right) -> Mesh: """Create a mesh of a unit square. Args: comm: MPI communicator nx: Number of cells in the "x" direction ny: Number of cells in the "y" direction cell_type: Mesh cell type ghost_mode: Ghost mode used in the mesh partitioning partitioner:Function that computes the parallel distribution of cells across MPI ranks diagonal: Direction of diagonal Returns: A mesh of a square with corners at (0, 0) and (1, 1) """ if partitioner is None: partitioner = _cpp.mesh.create_cell_partitioner(ghost_mode) return create_rectangle(comm, [np.array([0.0, 0.0]), np.array([1.0, 1.0])], [nx, ny], cell_type, ghost_mode, partitioner, diagonal)
[docs]def create_box(comm: _MPI.Comm, points: typing.List[npt.ArrayLike], n: list, cell_type=CellType.tetrahedron, ghost_mode=GhostMode.shared_facet, partitioner=None) -> Mesh: """Create a box mesh. Args: comm: MPI communicator points: Coordinates of the 'lower-left' and 'upper-right' corners of the box n: List of cells in each direction cell_type: The cell type ghost_mode: The ghost mode used in the mesh partitioning partitioner: Function that computes the parallel distribution of cells across MPI ranks Returns: A mesh of a box domain """ if partitioner is None: partitioner = _cpp.mesh.create_cell_partitioner(ghost_mode) domain = ufl.Mesh(basix.ufl.element("Lagrange", cell_type.name, 1, rank=1)) mesh = _cpp.mesh.create_box_float64(comm, points, n, cell_type, partitioner) return Mesh(mesh, domain)
[docs]def create_unit_cube(comm: _MPI.Comm, nx: int, ny: int, nz: int, cell_type=CellType.tetrahedron, ghost_mode=GhostMode.shared_facet, partitioner=None) -> Mesh: """Create a mesh of a unit cube. Args: comm: MPI communicator nx: Number of cells in "x" direction ny: Number of cells in "y" direction nz: Number of cells in "z" direction cell_type: Mesh cell type ghost_mode: Ghost mode used in the mesh partitioning partitioner: Function that computes the parallel distribution of cells across MPI ranks Returns: A mesh of an axis-aligned unit cube with corners at (0, 0, 0) and (1, 1, 1) """ if partitioner is None: partitioner = _cpp.mesh.create_cell_partitioner(ghost_mode) return create_box(comm, [np.array([0.0, 0.0, 0.0]), np.array([1.0, 1.0, 1.0])], [nx, ny, nz], cell_type, ghost_mode, partitioner)