10#include "cell_types.h"
39template <std::
floating_po
int T>
40std::tuple<std::vector<T>, std::vector<std::int64_t>>
41create_interval_cells(std::array<T, 2> p, std::int64_t n);
43template <std::
floating_po
int T>
44Mesh<T> build_tri(MPI_Comm comm, std::array<std::array<T, 2>, 2> p,
45 std::array<std::int64_t, 2> n,
49template <std::
floating_po
int T>
50Mesh<T> build_quad(MPI_Comm comm,
const std::array<std::array<T, 2>, 2> p,
51 std::array<std::int64_t, 2> n,
54template <std::
floating_po
int T>
55std::vector<T> create_geom(MPI_Comm comm, std::array<std::array<T, 3>, 2> p,
56 std::array<std::int64_t, 3> n);
58template <std::
floating_po
int T>
59Mesh<T> build_tet(MPI_Comm comm, MPI_Comm subcomm,
60 std::array<std::array<T, 3>, 2> p,
61 std::array<std::int64_t, 3> n,
64template <std::
floating_po
int T>
65Mesh<T> build_hex(MPI_Comm comm, MPI_Comm subcomm,
66 std::array<std::array<T, 3>, 2> p,
67 std::array<std::int64_t, 3> n,
70template <std::
floating_po
int T>
71Mesh<T> build_prism(MPI_Comm comm, MPI_Comm subcomm,
72 std::array<std::array<T, 3>, 2> p,
73 std::array<std::int64_t, 3> n,
97template <std::
floating_po
int T =
double>
99 std::array<std::array<T, 3>, 2> p,
100 std::array<std::int64_t, 3> n,
CellType celltype,
103 if (std::ranges::any_of(n, [](
auto e) {
return e < 1; }))
104 throw std::runtime_error(
"At least one cell per dimension is required");
106 for (int32_t i = 0; i < 3; i++)
108 if (p[0][i] >= p[1][i])
109 throw std::runtime_error(
"It must hold p[0] < p[1].");
117 case CellType::tetrahedron:
118 return impl::build_tet<T>(comm, subcomm, p, n, partitioner);
119 case CellType::hexahedron:
120 return impl::build_hex<T>(comm, subcomm, p, n, partitioner);
121 case CellType::prism:
122 return impl::build_prism<T>(comm, subcomm, p, n, partitioner);
124 throw std::runtime_error(
"Generate box mesh. Wrong cell type");
144template <std::
floating_po
int T =
double>
146 std::array<std::int64_t, 3> n,
CellType celltype,
149 return create_box<T>(comm, comm, p, n, celltype, partitioner);
168template <std::
floating_po
int T =
double>
170 std::array<std::int64_t, 2> n,
CellType celltype,
174 if (std::ranges::any_of(n, [](
auto e) {
return e < 1; }))
175 throw std::runtime_error(
"At least one cell per dimension is required");
177 for (int32_t i = 0; i < 2; i++)
179 if (p[0][i] >= p[1][i])
180 throw std::runtime_error(
"It must hold p[0] < p[1].");
188 case CellType::triangle:
189 return impl::build_tri<T>(comm, p, n, partitioner, diagonal);
190 case CellType::quadrilateral:
191 return impl::build_quad<T>(comm, p, n, partitioner);
193 throw std::runtime_error(
"Generate rectangle mesh. Wrong cell type");
211template <std::
floating_po
int T =
double>
213 std::array<std::int64_t, 2> n,
CellType celltype,
232template <std::
floating_po
int T =
double>
238 throw std::runtime_error(
"At least one cell is required.");
240 const auto [a, b] = p;
242 throw std::runtime_error(
"It must hold p[0] < p[1].");
243 if (std::abs(a - b) < std::numeric_limits<T>::epsilon())
245 throw std::runtime_error(
246 "Length of interval is zero. Check your dimensions.");
255 auto [x, cells] = impl::create_interval_cells<T>(p, n);
256 return create_mesh(comm, MPI_COMM_SELF, cells, element, MPI_COMM_SELF, x,
257 {x.size(), 1}, partitioner);
261 return create_mesh(comm, MPI_COMM_NULL, {}, element, MPI_COMM_NULL,
262 std::vector<T>{}, {0, 1}, partitioner);
269template <std::
floating_po
int T>
270std::tuple<std::vector<T>, std::vector<std::int64_t>>
271create_interval_cells(std::array<T, 2> p, std::int64_t n)
273 const auto [a, b] = p;
275 const T
h = (b - a) /
static_cast<T
>(n);
278 std::vector<T> x(n + 1);
279 std::ranges::generate(x, [i = std::int64_t(0), a,
h]()
mutable
280 {
return a +
h *
static_cast<T
>(i++); });
283 std::vector<std::int64_t> cells(2 * n);
284 for (std::size_t ix = 0; ix < cells.size() / 2; ++ix)
287 cells[2 * ix + 1] = ix + 1;
290 return {std::move(x), std::move(cells)};
293template <std::
floating_po
int T>
294std::vector<T> create_geom(MPI_Comm comm, std::array<std::array<T, 3>, 2> p,
295 std::array<std::int64_t, 3> n)
299 const auto [nx, ny, nz] = n;
301 assert(std::ranges::all_of(n, [](
auto e) {
return e >= 1; }));
305 const std::array<T, 3> extents = {
306 (p1[0] - p0[0]) /
static_cast<T
>(nx),
307 (p1[1] - p0[1]) /
static_cast<T
>(ny),
308 (p1[2] - p0[2]) /
static_cast<T
>(nz),
311 if (std::ranges::any_of(
313 {
return std::abs(e) < 2.0 * std::numeric_limits<T>::epsilon(); }))
315 throw std::runtime_error(
316 "Box seems to have zero width, height or depth. Check dimensions");
319 const std::int64_t n_points = (nx + 1) * (ny + 1) * (nz + 1);
324 geom.reserve((range_end - range_begin) * 3);
325 const std::int64_t sqxy = (nx + 1) * (ny + 1);
326 for (std::int64_t v = range_begin; v < range_end; ++v)
329 const std::int64_t p = v % sqxy;
330 std::array<std::int64_t, 3> idx = {p % (nx + 1), p / (nx + 1), v / sqxy};
333 for (std::size_t i = 0; i < idx.size(); i++)
334 geom.push_back(p0[i] +
static_cast<T
>(idx[i]) * extents[i]);
340template <std::
floating_po
int T>
341Mesh<T> build_tet(MPI_Comm comm, MPI_Comm subcomm,
342 std::array<std::array<T, 3>, 2> p,
343 std::array<std::int64_t, 3> n,
346 common::Timer timer(
"Build BoxMesh (tetrahedra)");
348 std::vector<std::int64_t>
cells;
349 fem::CoordinateElement<T> element(CellType::tetrahedron, 1);
350 if (subcomm != MPI_COMM_NULL)
352 x = create_geom<T>(subcomm, p, n);
354 const auto [nx, ny, nz] = n;
355 const std::int64_t n_cells = nx * ny * nz;
359 cells.reserve(6 * (range_c[1] - range_c[0]) * 4);
362 for (std::int64_t i = range_c[0]; i < range_c[1]; ++i)
364 const std::int64_t iz = i / (nx * ny);
365 const std::int64_t j = i % (nx * ny);
366 const std::int64_t iy = j / nx;
367 const std::int64_t ix = j % nx;
368 const std::int64_t v0 = iz * (nx + 1) * (ny + 1) + iy * (nx + 1) + ix;
369 const std::int64_t v1 = v0 + 1;
370 const std::int64_t v2 = v0 + (nx + 1);
371 const std::int64_t v3 = v1 + (nx + 1);
372 const std::int64_t v4 = v0 + (nx + 1) * (ny + 1);
373 const std::int64_t v5 = v1 + (nx + 1) * (ny + 1);
374 const std::int64_t v6 = v2 + (nx + 1) * (ny + 1);
375 const std::int64_t v7 = v3 + (nx + 1) * (ny + 1);
379 {v0, v1, v3, v7, v0, v1, v7, v5, v0, v5, v7, v4,
380 v0, v3, v2, v7, v0, v6, v4, v7, v0, v2, v6, v7});
384 return create_mesh(comm, subcomm, cells, element, subcomm, x,
385 {x.size() / 3, 3}, partitioner);
388template <std::
floating_po
int T>
389mesh::Mesh<T> build_hex(MPI_Comm comm, MPI_Comm subcomm,
390 std::array<std::array<T, 3>, 2> p,
391 std::array<std::int64_t, 3> n,
394 common::Timer timer(
"Build BoxMesh (hexahedra)");
396 std::vector<std::int64_t>
cells;
397 fem::CoordinateElement<T> element(CellType::hexahedron, 1);
398 if (subcomm != MPI_COMM_NULL)
400 x = create_geom<T>(subcomm, p, n);
403 const auto [nx, ny, nz] = n;
404 const std::int64_t n_cells = nx * ny * nz;
407 cells.reserve((range_c[1] - range_c[0]) * 8);
408 for (std::int64_t i = range_c[0]; i < range_c[1]; ++i)
410 const std::int64_t iz = i / (nx * ny);
411 const std::int64_t j = i % (nx * ny);
412 const std::int64_t iy = j / nx;
413 const std::int64_t ix = j % nx;
415 const std::int64_t v0 = (iz * (ny + 1) + iy) * (nx + 1) + ix;
416 const std::int64_t v1 = v0 + 1;
417 const std::int64_t v2 = v0 + (nx + 1);
418 const std::int64_t v3 = v1 + (nx + 1);
419 const std::int64_t v4 = v0 + (nx + 1) * (ny + 1);
420 const std::int64_t v5 = v1 + (nx + 1) * (ny + 1);
421 const std::int64_t v6 = v2 + (nx + 1) * (ny + 1);
422 const std::int64_t v7 = v3 + (nx + 1) * (ny + 1);
423 cells.insert(
cells.end(), {v0, v1, v2, v3, v4, v5, v6, v7});
427 return create_mesh(comm, subcomm, cells, element, subcomm, x,
428 {x.size() / 3, 3}, partitioner);
431template <std::
floating_po
int T>
432Mesh<T> build_prism(MPI_Comm comm, MPI_Comm subcomm,
433 std::array<std::array<T, 3>, 2> p,
434 std::array<std::int64_t, 3> n,
438 std::vector<std::int64_t>
cells;
439 fem::CoordinateElement<T> element(CellType::prism, 1);
440 if (subcomm != MPI_COMM_NULL)
442 x = create_geom<T>(subcomm, p, n);
444 const std::int64_t nx = n[0];
445 const std::int64_t ny = n[1];
446 const std::int64_t nz = n[2];
447 const std::int64_t n_cells = nx * ny * nz;
450 const std::int64_t cell_range = range_c[1] - range_c[0];
453 cells.reserve(2 * cell_range * 6);
454 for (std::int64_t i = range_c[0]; i < range_c[1]; ++i)
456 const std::int64_t iz = i / (nx * ny);
457 const std::int64_t j = i % (nx * ny);
458 const std::int64_t iy = j / nx;
459 const std::int64_t ix = j % nx;
461 const std::int64_t v0 = (iz * (ny + 1) + iy) * (nx + 1) + ix;
462 const std::int64_t v1 = v0 + 1;
463 const std::int64_t v2 = v0 + (nx + 1);
464 const std::int64_t v3 = v1 + (nx + 1);
465 const std::int64_t v4 = v0 + (nx + 1) * (ny + 1);
466 const std::int64_t v5 = v1 + (nx + 1) * (ny + 1);
467 const std::int64_t v6 = v2 + (nx + 1) * (ny + 1);
468 const std::int64_t v7 = v3 + (nx + 1) * (ny + 1);
469 cells.insert(
cells.end(), {v0, v1, v2, v4, v5, v6});
470 cells.insert(
cells.end(), {v1, v2, v3, v5, v6, v7});
474 return create_mesh(comm, subcomm, cells, element, subcomm, x,
475 {x.size() / 3, 3}, partitioner);
478template <std::
floating_po
int T>
479Mesh<T> build_tri(MPI_Comm comm, std::array<std::array<T, 2>, 2> p,
480 std::array<std::int64_t, 2> n,
484 fem::CoordinateElement<T> element(CellType::triangle, 1);
487 const auto [p0, p1] = p;
488 const auto [nx, ny] = n;
490 const auto [a, c] = p0;
491 const auto [b, d] = p1;
493 const T ab = (b - a) /
static_cast<T
>(nx);
494 const T cd = (d - c) /
static_cast<T
>(ny);
495 if (std::abs(b - a) < std::numeric_limits<T>::epsilon()
496 or std::abs(d - c) < std::numeric_limits<T>::epsilon())
498 throw std::runtime_error(
"Rectangle seems to have zero width, height or "
499 "depth. Check dimensions");
506 case DiagonalType::crossed:
507 nv = (nx + 1) * (ny + 1) + nx * ny;
511 nv = (nx + 1) * (ny + 1);
517 std::vector<std::int64_t>
cells;
518 cells.reserve(nc * 3);
522 for (std::int64_t iy = 0; iy <= ny; iy++)
524 T x1 = c + cd *
static_cast<T
>(iy);
525 for (std::int64_t ix = 0; ix <= nx; ix++)
526 x.insert(x.end(), {a + ab * static_cast<T>(ix), x1});
532 case DiagonalType::crossed:
533 for (std::int64_t iy = 0; iy < ny; iy++)
535 T x1 = c + cd * (
static_cast<T
>(iy) + 0.5);
536 for (std::int64_t ix = 0; ix < nx; ix++)
538 T x0 = a + ab * (
static_cast<T
>(ix) + 0.5);
539 x.insert(x.end(), {x0, x1});
550 case DiagonalType::crossed:
552 for (std::int64_t iy = 0; iy < ny; iy++)
554 for (std::int64_t ix = 0; ix < nx; ix++)
556 std::int64_t v0 = iy * (nx + 1) + ix;
557 std::int64_t v1 = v0 + 1;
558 std::int64_t v2 = v0 + (nx + 1);
559 std::int64_t v3 = v1 + (nx + 1);
560 std::int64_t vmid = (nx + 1) * (ny + 1) + iy * nx + ix;
563 cells.insert(
cells.end(), {v0, v1, vmid, v0, v2, vmid, v1, v3, vmid,
572 for (std::int64_t iy = 0; iy < ny; iy++)
577 case DiagonalType::right_left:
579 local_diagonal = DiagonalType::right;
581 local_diagonal = DiagonalType::left;
583 case DiagonalType::left_right:
585 local_diagonal = DiagonalType::left;
587 local_diagonal = DiagonalType::right;
592 for (std::int64_t ix = 0; ix < nx; ix++)
594 std::int64_t v0 = iy * (nx + 1) + ix;
595 std::int64_t v1 = v0 + 1;
596 std::int64_t v2 = v0 + (nx + 1);
597 std::int64_t v3 = v1 + (nx + 1);
598 switch (local_diagonal)
600 case DiagonalType::left:
602 cells.insert(
cells.end(), {v0, v1, v2, v1, v2, v3});
603 if (diagonal == DiagonalType::right_left
604 or diagonal == DiagonalType::left_right)
606 local_diagonal = DiagonalType::right;
612 cells.insert(
cells.end(), {v0, v1, v3, v0, v2, v3});
613 if (diagonal == DiagonalType::right_left
614 or diagonal == DiagonalType::left_right)
616 local_diagonal = DiagonalType::left;
625 return create_mesh(comm, MPI_COMM_SELF, cells, element, MPI_COMM_SELF, x,
626 {x.size() / 2, 2}, partitioner);
630 return create_mesh(comm, MPI_COMM_NULL, {}, element, MPI_COMM_NULL,
631 std::vector<T>{}, {0, 2}, partitioner);
635template <std::
floating_po
int T>
636Mesh<T> build_quad(MPI_Comm comm,
const std::array<std::array<T, 2>, 2> p,
637 std::array<std::int64_t, 2> n,
640 fem::CoordinateElement<T> element(CellType::quadrilateral, 1);
643 const auto [nx, ny] = n;
644 const auto [a, c] = p[0];
645 const auto [b, d] = p[1];
647 const T ab = (b - a) /
static_cast<T
>(nx);
648 const T cd = (d - c) /
static_cast<T
>(ny);
652 x.reserve((nx + 1) * (ny + 1) * 2);
654 for (std::int64_t ix = 0; ix <= nx; ix++)
656 T x0 = a + ab *
static_cast<T
>(ix);
657 for (std::int64_t iy = 0; iy <= ny; iy++)
658 x.insert(x.end(), {x0, c + cd * static_cast<T>(iy)});
662 std::vector<std::int64_t>
cells;
663 cells.reserve(nx * ny * 4);
664 for (std::int64_t ix = 0; ix < nx; ix++)
666 for (std::int64_t iy = 0; iy < ny; iy++)
668 std::int64_t i0 = ix * (ny + 1);
669 cells.insert(
cells.end(), {i0 + iy, i0 + iy + 1, i0 + iy + ny + 1,
674 return create_mesh(comm, MPI_COMM_SELF, cells, element, MPI_COMM_SELF, x,
675 {x.size() / 2, 2}, partitioner);
679 return create_mesh(comm, MPI_COMM_NULL, {}, element, MPI_COMM_NULL,
680 std::vector<T>{}, {0, 2}, partitioner);
A Mesh consists of a set of connected and numbered mesh topological entities, and geometry data.
Definition Mesh.h:23
Functions supporting mesh operations.
int size(MPI_Comm comm)
Definition MPI.cpp:72
int rank(MPI_Comm comm)
Return process rank for the communicator.
Definition MPI.cpp:64
constexpr std::array< std::int64_t, 2 > local_range(int rank, std::int64_t N, int size)
Return local range for the calling process, partitioning the global [0, N - 1] range across all ranks...
Definition MPI.h:91
void cells(la::SparsityPattern &pattern, std::array< std::span< const std::int32_t >, 2 > cells, std::array< std::reference_wrapper< const DofMap >, 2 > dofmaps)
Iterate over cells and insert entries into sparsity pattern.
Definition sparsitybuild.cpp:16
Mesh data structures and algorithms on meshes.
Definition DofMap.h:32
Mesh< T > create_box(MPI_Comm comm, MPI_Comm subcomm, std::array< std::array< T, 3 >, 2 > p, std::array< std::int64_t, 3 > n, CellType celltype, CellPartitionFunction partitioner=nullptr)
Create a uniform mesh::Mesh over rectangular prism spanned by the two points p.
Definition generation.h:98
GhostMode
Enum for different partitioning ghost modes.
Definition utils.h:37
DiagonalType
Enum for different diagonal types.
Definition generation.h:28
std::vector< T > h(const Mesh< T > &mesh, std::span< const std::int32_t > entities, int dim)
Compute greatest distance between any two vertices of the mesh entities (h).
Definition utils.h:217
Mesh< typename std::remove_reference_t< typename U::value_type > > create_mesh(MPI_Comm comm, MPI_Comm commt, std::vector< std::span< const std::int64_t > > cells, const std::vector< fem::CoordinateElement< typename std::remove_reference_t< typename U::value_type > > > &elements, MPI_Comm commg, const U &x, std::array< std::size_t, 2 > xshape, const CellPartitionFunction &partitioner)
Create a distributed mesh::Mesh from mesh data and using the provided graph partitioning function for...
Definition utils.h:803
Mesh< T > create_rectangle(MPI_Comm comm, std::array< std::array< T, 2 >, 2 > p, std::array< std::int64_t, 2 > n, CellType celltype, CellPartitionFunction partitioner, DiagonalType diagonal=DiagonalType::right)
Create a uniform mesh::Mesh over the rectangle spanned by the two points p.
Definition generation.h:169
Mesh< T > create_interval(MPI_Comm comm, std::int64_t n, std::array< T, 2 > p, mesh::GhostMode ghost_mode=mesh::GhostMode::none, CellPartitionFunction partitioner=nullptr)
Interval mesh of the 1D line [a, b].
Definition generation.h:233
CellType
Cell type identifier.
Definition cell_types.h:22
std::function< graph::AdjacencyList< std::int32_t >( MPI_Comm comm, int nparts, const std::vector< CellType > &cell_types, const std::vector< std::span< const std::int64_t > > &cells)> CellPartitionFunction
Signature for the cell partitioning function. Function that implement this interface compute the dest...
Definition utils.h:191
CellPartitionFunction create_cell_partitioner(mesh::GhostMode ghost_mode=mesh::GhostMode::none, const graph::partition_fn &partfn=&graph::partition_graph)
Create a function that computes destination rank for mesh cells on this rank by applying the default ...
Definition utils.cpp:85