Home Installation Demos C++ docs Python docs
basix::polynomials Namespace Reference
Polynomials. More...
Enumerations | |
enum class | type { legendre = 0 , bernstein = 1 } |
Variants of a Lagrange space that can be created. | |
Functions | |
template<std::floating_point T> | |
std::pair< std::vector< T >, std::array< std::size_t, 2 > > | tabulate (polynomials::type polytype, cell::type celltype, int d, MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan< const T, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents< std::size_t, 2 >> x) |
Tabulate a set of polynomials. More... | |
int | dim (polynomials::type polytype, cell::type cell, int d) |
Dimension of a polynomial space. More... | |
Detailed Description
Polynomials.
Function Documentation
◆ tabulate()
template<std::floating_point T>
std::pair< std::vector< T >, std::array< std::size_t, 2 > > basix::polynomials::tabulate | ( | polynomials::type | polytype, |
cell::type | celltype, | ||
int | d, | ||
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan< const T, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents< std::size_t, 2 >> | x | ||
) |
Tabulate a set of polynomials.
- Parameters
-
[in] polytype Polynomial type [in] celltype Cell type [in] d Polynomial degree [in] x Points at which to evaluate the basis. The shape is (number of points, geometric dimension).
- Returns
- Polynomial sets, for each derivative, tabulated at points. The shape is
(basis index, number of points)
.
◆ dim()
int basix::polynomials::dim | ( | polynomials::type | polytype, |
cell::type | cell, | ||
int | d | ||
) |
Dimension of a polynomial space.
- Parameters
-
[in] polytype Polynomial type [in] cell Cell type [in] d Polynomial degree
- Returns
- The number terms in the basis spanning a space of polynomial degree
d
.