Home Installation Demos C++ docs Python docs
basix::math Namespace Reference
Mathematical functions. More...
Functions | |
template<typename U , typename V > | |
std::pair< std::vector< typename U::value_type >, std::array< std::size_t, 2 > > | outer (const U &u, const V &v) |
Compute the outer product of vectors u and v. More... | |
template<typename U , typename V > | |
std::array< typename U::value_type, 3 > | cross (const U &u, const V &v) |
Compute the cross product u x v. More... | |
template<std::floating_point T> | |
std::pair< std::vector< T >, std::vector< T > > | eigh (std::span< const T > A, std::size_t n) |
Compute the eigenvalues and eigenvectors of a square Hermitian matrix A. More... | |
template<std::floating_point T> | |
std::vector< T > | solve (MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan< const T, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents< std::size_t, 2 >> A, MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan< const T, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents< std::size_t, 2 >> B) |
Solve A X = B. More... | |
template<std::floating_point T> | |
bool | is_singular (MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan< const T, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents< std::size_t, 2 >> A) |
Check if A is a singular matrix. More... | |
template<std::floating_point T> | |
std::vector< std::size_t > | transpose_lu (std::pair< std::vector< T >, std::array< std::size_t, 2 >> &A) |
Compute the LU decomposition of the transpose of a square matrix A. More... | |
template<typename U , typename V , typename W > | |
void | dot (const U &A, const V &B, W &&C, typename std::decay_t< U >::value_type alpha=1, typename std::decay_t< U >::value_type beta=0) |
Compute C = alpha A * B + beta C. More... | |
template<std::floating_point T> | |
std::vector< T > | eye (std::size_t n) |
Build an identity matrix. More... | |
template<std::floating_point T> | |
void | orthogonalise (MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan< T, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents< std::size_t, 2 >> wcoeffs, std::size_t start=0) |
Orthogonalise the rows of a matrix (in place). More... | |
Detailed Description
Mathematical functions.
- Note
- Functions in this namespace are designed to be called multiple times at runtime, so their performance is critical.
Function Documentation
◆ outer()
template<typename U , typename V >
std::pair<std::vector<typename U::value_type>, std::array<std::size_t, 2> > basix::math::outer | ( | const U & | u, |
const V & | v | ||
) |
Compute the outer product of vectors u and v.
- Parameters
-
u The first vector. v The second vector.
- Returns
- The outer product. The type will be the same as
u
.
◆ cross()
template<typename U , typename V >
std::array<typename U::value_type, 3> basix::math::cross | ( | const U & | u, |
const V & | v | ||
) |
Compute the cross product u x v.
- Parameters
-
u The first vector. It must has size 3. v The second vector. It must has size 3.
- Returns
- The cross product
u x v
. The type will be the same asu
.
◆ eigh()
template<std::floating_point T>
std::pair<std::vector<T>, std::vector<T> > basix::math::eigh | ( | std::span< const T > | A, |
std::size_t | n | ||
) |
Compute the eigenvalues and eigenvectors of a square Hermitian matrix A.
- Parameters
-
[in] A Input matrix, row-major storage. [in] n Number of rows.
- Returns
- Eigenvalues (0) and eigenvectors (1). The eigenvector array uses column-major storage, which each column being an eigenvector.
- Precondition
- The matrix
A
must be symmetric.
◆ solve()
template<std::floating_point T>
std::vector<T> basix::math::solve | ( | MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan< const T, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents< std::size_t, 2 >> | A, |
MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan< const T, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents< std::size_t, 2 >> | B | ||
) |
Solve A X = B.
- Parameters
-
[in] A The matrix. [in] B Right-hand side matrix/vector.
- Returns
- A^{-1} B.
◆ is_singular()
template<std::floating_point T>
bool basix::math::is_singular | ( | MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan< const T, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents< std::size_t, 2 >> | A | ) |
Check if A is a singular matrix.
- Parameters
-
[in] A The matrix.
- Returns
- A bool indicating if the matrix is singular.
◆ transpose_lu()
template<std::floating_point T>
std::vector<std::size_t> basix::math::transpose_lu | ( | std::pair< std::vector< T >, std::array< std::size_t, 2 >> & | A | ) |
Compute the LU decomposition of the transpose of a square matrix A.
- Parameters
-
[in,out] A The matrix.
- Returns
- The LU permutation, in prepared format (see precompute::prepare_permutation).
◆ dot()
template<typename U , typename V , typename W >
void basix::math::dot | ( | const U & | A, |
const V & | B, | ||
W && | C, | ||
typename std::decay_t< U >::value_type | alpha = 1 , |
||
typename std::decay_t< U >::value_type | beta = 0 |
||
) |
Compute C = alpha A * B + beta C.
- Parameters
-
[in] A Input matrix [in] B Input matrix [out] C Output matrix. Must be sized correctly before calling this function. [in] alpha [in] beta
◆ eye()
template<std::floating_point T>
std::vector<T> basix::math::eye | ( | std::size_t | n | ) |
Build an identity matrix.
- Parameters
-
[in] n The number of rows/columns.
- Returns
- Identity matrix using row-major storage.
◆ orthogonalise()
template<std::floating_point T>
void basix::math::orthogonalise | ( | MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan< T, MDSPAN_IMPL_STANDARD_NAMESPACE::dextents< std::size_t, 2 >> | wcoeffs, |
std::size_t | start = 0 |
||
) |
Orthogonalise the rows of a matrix (in place).
- Parameters
-
[in] wcoeffs The matrix. [in] start The row to start from. The rows before this should already be orthogonal.