Source code for ufl.tensors

"""Classes used to group scalar expressions into expressions with rank > 0."""
# Copyright (C) 2008-2016 Martin Sandve Alnæs
#
# This file is part of UFL (https://www.fenicsproject.org)
#
# SPDX-License-Identifier:    LGPL-3.0-or-later
#
# Modified by Massimiliano Leoni, 2016.

from ufl.constantvalue import Zero, as_ufl
from ufl.core.expr import Expr
from ufl.core.multiindex import FixedIndex, Index, MultiIndex, indices
from ufl.core.operator import Operator
from ufl.core.ufl_type import ufl_type
from ufl.index_combination_utils import remove_indices
from ufl.indexed import Indexed

# --- Classes representing tensors of UFL expressions ---


@ufl_type(is_shaping=True, num_ops="varying", inherit_indices_from_operand=0)
class ListTensor(Operator):
    """Wraps a list of expressions into a tensor valued expression of one higher rank."""

    __slots__ = ("_initialised",)

    def __new__(cls, *expressions):
        """Create a new ListTensor."""
        # All lists and tuples should already be unwrapped in
        # as_tensor
        if any(not isinstance(e, Expr) for e in expressions):
            raise ValueError("Expecting only UFL expressions in ListTensor constructor.")

        # Get properties of the first expression
        e0 = expressions[0]
        sh = e0.ufl_shape
        fi = e0.ufl_free_indices
        fid = e0.ufl_index_dimensions

        # Obviously, each subexpression must have the same shape
        if any(sh != e.ufl_shape for e in expressions[1:]):
            raise ValueError(
                "Cannot create a tensor by joining subexpressions with different shapes."
            )
        if any(fi != e.ufl_free_indices for e in expressions[1:]):
            raise ValueError(
                "Cannot create a tensor where the components have different free indices."
            )
        if any(fid != e.ufl_index_dimensions for e in expressions[1:]):
            raise ValueError(
                "Cannot create a tensor where the components have different free index dimensions."
            )

        # Simplify to Zero if possible
        if all(isinstance(e, Zero) for e in expressions):
            shape = (len(expressions), *sh)
            return Zero(shape, fi, fid)

        def sub(e, *indices):
            for i in indices:
                e = e.ufl_operands[i]
            return e

        def sub_equals(exprs, *indices):
            sube0 = sub(exprs[0], *indices)
            return all(sub(e, *indices) is sube0 for e in exprs[1:])

        # Simplify [v[j,0], v[j,1], ...., v[j,k]] -> v[j,:]
        if (
            all(isinstance(e, Indexed) for e in expressions)
            and sub(e0, 0).ufl_shape[-1] == len(expressions)
            and sub_equals(expressions, 0)
        ):
            indices = [sub(e, 1).indices() for e in expressions]
            try:
                (j,) = set(i[:-1] for i in indices)
                if all(i[-1] == k for k, i in enumerate(indices)):
                    return sub(e0, 0) if j == () else sub(e0, 0)[(*j, slice(None))]
            except ValueError:
                pass
        # Simplify [v[0,:], v[1,:], ..., v[k,:]] -> v
        if (
            all(
                isinstance(e, ComponentTensor) and isinstance(sub(e, 0), Indexed)
                for e in expressions
            )
            and sub(e0, 0, 0).ufl_shape[0] == len(expressions)
            and sub_equals(expressions, 0, 0)
        ):
            indices = [sub(e, 0, 1).indices() for e in expressions]
            if all(
                i[0] == k and all(isinstance(subindex, Index) for subindex in i[1:])
                for k, i in enumerate(indices)
            ):
                return sub(e0, 0, 0)

        # Construct a new instance to be initialised
        self = Operator.__new__(cls)
        self._initialised = False
        return self

    def __init__(self, *expressions):
        """Initialise."""
        if self._initialised:
            return
        Operator.__init__(self, expressions)

        # Checks
        indexset = set(self.ufl_operands[0].ufl_free_indices)
        if not all(not (indexset ^ set(e.ufl_free_indices)) for e in self.ufl_operands):
            raise ValueError(
                "Can't combine subtensor expressions with different sets of free indices."
            )
        self._initialised = True

    @property
    def ufl_shape(self):
        """Get the UFL shape."""
        return (len(self.ufl_operands),) + self.ufl_operands[0].ufl_shape

    def evaluate(self, x, mapping, component, index_values, derivatives=()):
        """Evaluate."""
        if len(component) != len(self.ufl_shape):
            raise ValueError(
                "Can only evaluate scalars, expecting a component "
                "tuple of length {len(self.ufl_shape)}, not {component}."
            )
        a = self.ufl_operands[component[0]]
        component = component[1:]
        if derivatives:
            return a.evaluate(x, mapping, component, index_values, derivatives)
        else:
            return a.evaluate(x, mapping, component, index_values)

    def _simplify_indexed(self, multiindex):
        """Return a simplified Expr used in the constructor of Indexed(self, multiindex)."""
        k = multiindex[0]
        if isinstance(k, FixedIndex):
            sub = self.ufl_operands[int(k)]
            return Indexed(sub, MultiIndex(multiindex[1:]))
        return Operator._simplify_indexed(self, multiindex)

    def __getitem__(self, key):
        """Get an item."""
        origkey = key

        if isinstance(key, MultiIndex):
            key = key.indices()
        if not isinstance(key, tuple):
            key = (key,)
        if len(key) == 0:
            return self
        k = key[0]
        if isinstance(k, int | FixedIndex):
            sub = self.ufl_operands[int(k)]
            return sub if len(key) == 1 else sub[key[1:]]

        return Expr.__getitem__(self, origkey)

    def __str__(self):
        """Format as a string."""

        def substring(expressions, indent):
            ind = " " * indent
            if any(isinstance(e, ListTensor) for e in expressions):
                substrings = []
                for e in expressions:
                    if isinstance(e, ListTensor):
                        substrings.append(substring(e.ufl_operands, indent + 2))
                    else:
                        substrings.append(str(e))
                s = (",\n" + ind).join(substrings)
                return f"{ind}[\n{ind}{s}\n{ind}]"
            else:
                s = ", ".join(map(str, expressions))
                return f"{ind}[{s}]"

        return substring(self.ufl_operands, 0)


@ufl_type(is_shaping=True, num_ops="varying")
class ComponentTensor(Operator):
    """Maps the free indices of a scalar valued expression to tensor axes."""

    __slots__ = ("_initialised", "ufl_free_indices", "ufl_index_dimensions", "ufl_shape")

    def __new__(cls, expression, indices):
        """Create a new ComponentTensor."""
        # Zero-simplify
        if isinstance(expression, Zero):
            fi, fid, sh = remove_indices(
                expression.ufl_free_indices,
                expression.ufl_index_dimensions,
                [ind.count() for ind in indices],
            )
            return Zero(sh, fi, fid)

        # Special case for simplification as_tensor(A[ii], ii) -> A
        if isinstance(expression, Indexed):
            A, ii = expression.ufl_operands
            if indices == ii:
                return A

        # Construct a new instance to be initialised
        self = Operator.__new__(cls)
        self._initialised = False
        return self

    def __init__(self, expression, indices):
        """Initialise."""
        if self._initialised:
            return
        if not isinstance(expression, Expr):
            raise ValueError("Expecting ufl expression.")
        if expression.ufl_shape != ():
            raise ValueError("Expecting scalar valued expression.")
        if not isinstance(indices, MultiIndex):
            raise ValueError("Expecting a MultiIndex.")
        if not all(isinstance(i, Index) for i in indices):
            raise ValueError(f"Expecting sequence of Index objects, not {indices._ufl_err_str_()}.")

        Operator.__init__(self, (expression, indices))

        fi, fid, sh = remove_indices(
            expression.ufl_free_indices,
            expression.ufl_index_dimensions,
            [ind.count() for ind in indices],
        )
        self.ufl_free_indices = fi
        self.ufl_index_dimensions = fid
        self.ufl_shape = sh
        self._initialised = True

    def _simplify_indexed(self, multiindex):
        """Return a simplified Expr used in the constructor of Indexed(self, multiindex)."""
        # Untangle as_tensor(C[kk], jj)[ii] -> C[ll]
        B, jj = self.ufl_operands
        if len(multiindex) != len(jj):
            raise ValueError(f"len(multiindex) ({len(multiindex)}) != len(jj) ({len(jj)})")
        rep = dict(zip(jj, multiindex))
        # Avoid recursion and just attempt to simplify some common patterns
        # as the result of this method is not cached.
        if isinstance(B, Indexed):
            C, kk = B.ufl_operands
            if isinstance(C, ListTensor) and len(kk) == 1 and isinstance(rep[kk[0]], FixedIndex):
                (k,) = kk
                B = C.ufl_operands[int(rep[k])]
                jj = MultiIndex(tuple(j for j in jj if j != k))
                multiindex = MultiIndex(tuple(rep[j] for j in jj))
                rep = dict(zip(jj, multiindex))
        if isinstance(B, Indexed):
            C, kk = B.ufl_operands
            if all(j in kk for j in jj):
                Cind = tuple(rep.get(k, k) for k in kk)
                return Indexed(C, MultiIndex(Cind))
        return Operator._simplify_indexed(self, multiindex)

    def indices(self):
        """Get indices."""
        return self.ufl_operands[1]

    def evaluate(self, x, mapping, component, index_values):
        """Evaluate."""
        a, indices = self.ufl_operands

        if len(indices) != len(component):
            raise ValueError("Expecting a component matching the indices tuple.")

        # Map component to indices
        for i, c in zip(indices, component):
            index_values.push(i, c)

        a = a.evaluate(x, mapping, (), index_values)

        for _ in component:
            index_values.pop()

        return a

    def __str__(self):
        """Format as a string."""
        return f"{{ A | A_{{{self.ufl_operands[1]}}} = {self.ufl_operands[0]} }}"


# --- User-level functions to wrap expressions in the correct way ---


def numpy2nestedlists(arr):
    """Convert Numpy array to a nested list."""
    from numpy import ndarray

    if not isinstance(arr, ndarray):
        return arr
    return [numpy2nestedlists(arr[k]) for k in range(arr.shape[0])]


def _as_list_tensor(expressions):
    """Convert to a list tensor."""
    if isinstance(expressions, list | tuple):
        expressions = [_as_list_tensor(e) for e in expressions]
        return ListTensor(*expressions)
    else:
        return as_ufl(expressions)


def from_numpy_to_lists(expressions):
    """Convert Numpy array to lists."""
    try:
        import numpy as np

        if isinstance(expressions, np.ndarray):
            if expressions.shape == ():
                # Unwrap scalar ndarray
                return expressions.item()
            else:
                expressions = numpy2nestedlists(expressions)
    except Exception:
        pass
    return expressions


[docs] def as_tensor(expressions, indices=None): """Make a tensor valued expression. This works in two different ways, by using indices or lists. 1) Returns :math:`A` such that :math:`A` [*indices*] = *expressions*. If *indices* are provided, *expressions* must be a scalar valued expression with all the provided indices among its free indices. This operator will then map each of these indices to a tensor axis, thereby making a tensor valued expression from a scalar valued expression with free indices. 2) Returns :math:`A` such that :math:`A[k,...]` = *expressions*[k]. If no indices are provided, *expressions* must be a list or tuple of expressions. The expressions can also consist of recursively nested lists to build higher rank tensors. """ if indices is None: # Allow as_tensor(as_tensor(A)) and as_vector(as_vector(v)) in user code if isinstance(expressions, Expr): return expressions # Support numpy array, but avoid importing numpy if not needed if not isinstance(expressions, list | tuple): expressions = from_numpy_to_lists(expressions) # Sanity check if not isinstance(expressions, list | tuple | Expr): raise ValueError("Expecting nested list or tuple.") # Recursive conversion from nested lists to nested ListTensor # objects return _as_list_tensor(expressions) else: # Make sure we have a tuple of indices if isinstance(indices, list): indices = tuple(indices) elif not isinstance(indices, tuple): indices = (indices,) # Special case for as_tensor(expr, ii) with ii = () if indices == (): return expressions indices = MultiIndex(indices) # Special case for simplification as_tensor(A[ii], ii) -> A if isinstance(expressions, Indexed): A, ii = expressions.ufl_operands if indices.indices() == ii.indices(): return A # Make a tensor from given scalar expression with free indices return ComponentTensor(expressions, indices)
[docs] def as_matrix(expressions, indices=None): """As *as_tensor()*, but limited to rank 2 tensors.""" if indices is None: # Allow as_matrix(as_matrix(A)) in user code if isinstance(expressions, Expr): if len(expressions.ufl_shape) != 2: raise ValueError("Expecting rank 2 tensor.") return expressions # To avoid importing numpy unneeded, it's quite slow... if not isinstance(expressions, list | tuple): expressions = from_numpy_to_lists(expressions) # Check for expected list structure if not isinstance(expressions, list | tuple): raise ValueError("Expecting nested list or tuple of Exprs.") if not isinstance(expressions[0], list | tuple): raise ValueError("Expecting nested list or tuple of Exprs.") else: if len(indices) != 2: raise ValueError("Expecting exactly two indices.") return as_tensor(expressions, indices)
[docs] def as_vector(expressions, index=None): """As ``as_tensor()``, but limited to rank 1 tensors.""" if index is None: # Allow as_vector(as_vector(v)) in user code if isinstance(expressions, Expr): if len(expressions.ufl_shape) != 1: raise ValueError("Expecting rank 1 tensor.") return expressions # To avoid importing numpy unneeded, it's quite slow... if not isinstance(expressions, list | tuple): expressions = from_numpy_to_lists(expressions) # Check for expected list structure if not isinstance(expressions, list | tuple): raise ValueError("Expecting nested list or tuple of Exprs.") else: if not isinstance(index, Index): raise ValueError("Expecting a single Index object.") index = (index,) return as_tensor(expressions, index)
def as_scalar(expression): """As scalar. Given a scalar or tensor valued expression A, returns either of the tuples .. code-block:: python (a, b) = (A, ()) (a, b) = (A[indices], indices) such that a is always a scalar valued expression. """ ii = indices(len(expression.ufl_shape)) if ii: expression = expression[ii] return expression, ii def as_scalars(*expressions): """As scalars. Given multiple scalar or tensor valued expressions A, returns either of the tuples .. code-block:: python (a, b) = (A, ()) (a, b) = ([A[0][indices], ..., A[-1][indices]], indices) such that a is always a list of scalar valued expressions. """ ii = indices(len(expressions[0].ufl_shape)) if ii: expressions = [expression[ii] for expression in expressions] return expressions, ii def unit_list(i, n): """Create a list of zeros where the ith entry is 1.""" return [(1 if i == j else 0) for j in range(n)] def unit_list2(i, j, n): """Creage a two dimensional list of zeros where the (i,j)th entry is 1.""" return [[(1 if (i == i0 and j == j0) else 0) for j0 in range(n)] for i0 in range(n)]
[docs] def unit_vector(i, d): """A constant unit vector in direction *i* with dimension *d*.""" return as_vector(unit_list(i, d))
[docs] def unit_vectors(d): """A tuple of constant unit vectors in all directions with dimension *d*.""" return tuple(unit_vector(i, d) for i in range(d))
[docs] def unit_matrix(i, j, d): """A constant unit matrix in direction *i*,*j* with dimension *d*.""" return as_matrix(unit_list2(i, j, d))
[docs] def unit_matrices(d): """A tuple of constant unit matrices in all directions with dimension *d*.""" return tuple(unit_matrix(i, j, d) for i in range(d) for j in range(d))
def unit_indexed_tensor(shape, component): """Unit indexed tensor.""" from ufl.constantvalue import Identity from ufl.operators import outer # a bit of circular dependency issue here r = len(shape) if r == 0: return 0, () jj = indices(r) es = [] for i in range(r): s = shape[i] c = component[i] j = jj[i] e = Identity(s)[c, j] es.append(e) E = es[0] for e in es[1:]: E = outer(E, e) return E, jj def unwrap_list_tensor(lt): """Unwrap a list tensor.""" components = [] sh = lt.ufl_shape subs = lt.ufl_operands if len(sh) == 1: for s in range(sh[0]): components.append(((s,), subs[s])) else: for s, sub in enumerate(subs): for c, v in unwrap_list_tensor(sub): components.append(((s,) + c, v)) return components