Source code for ufl.form
"""The Form class."""
# Copyright (C) 2008-2016 Martin Sandve Alnæs
#
# This file is part of UFL (https://www.fenicsproject.org)
#
# SPDX-License-Identifier: LGPL-3.0-or-later
#
# Modified by Anders Logg, 2009-2011.
# Modified by Massimiliano Leoni, 2016.
# Modified by Cecile Daversin-Catty, 2018.
# Modified by Nacime Bouziani, 2020.
# Modified by Jørgen S. Dokken 2023.
import numbers
import warnings
from collections import defaultdict
from itertools import chain
from ufl.checks import is_scalar_constant_expression
from ufl.constant import Constant
from ufl.constantvalue import Zero
from ufl.core.expr import Expr, ufl_err_str
from ufl.core.ufl_type import UFLType, ufl_type
from ufl.domain import extract_unique_domain, sort_domains
from ufl.equation import Equation
from ufl.integral import Integral
from ufl.utils.counted import Counted
from ufl.utils.sorting import sorted_by_count
# Export list for ufl.classes
__all_classes__ = ["Form", "BaseForm", "ZeroBaseForm"]
# --- The Form class, representing a complete variational form or functional ---
def _sorted_integrals(integrals):
"""Sort integrals for a stable signature computation.
Sort integrals by domain id, integral type, subdomain id for a more
stable signature computation.
"""
# Group integrals in multilevel dict by keys
# [domain][integral_type][subdomain_id]
integrals_dict = defaultdict(lambda: defaultdict(lambda: defaultdict(list)))
for integral in integrals:
d = integral.ufl_domain()
if d is None:
raise ValueError(
"Each integral in a form must have a uniquely defined integration domain."
)
it = integral.integral_type()
si = integral.subdomain_id()
integrals_dict[d][it][si] += [integral]
all_integrals = []
def keyfunc(item):
if isinstance(item, numbers.Integral):
sid_int = item
else:
# As subdomain ids can be either int or tuples, we need to compare them
sid_int = tuple(-1 if i == "otherwise" else i for i in item)
return (type(item).__name__, sid_int)
# Order integrals canonically to increase signature stability
for d in sort_domains(integrals_dict):
for it in sorted(integrals_dict[d]): # str is sortable
for si in sorted(integrals_dict[d][it], key=keyfunc):
unsorted_integrals = integrals_dict[d][it][si]
# TODO: At this point we could order integrals by
# metadata and integrand, or even add the
# integrands with the same metadata. This is done
# in accumulate_integrands_with_same_metadata in
# algorithms/domain_analysis.py and would further
# increase the signature stability.
all_integrals.extend(unsorted_integrals)
# integrals_dict[d][it][si] = unsorted_integrals
return tuple(all_integrals) # integrals_dict
[docs]@ufl_type()
class BaseForm(object, metaclass=UFLType):
"""Description of an object containing arguments."""
# Slots is kept empty to enable multiple inheritance with other
# classes
__slots__ = ()
_ufl_is_abstract_ = True
_ufl_required_methods_ = ("_analyze_form_arguments", "_analyze_domains", "ufl_domains")
def __init__(self):
"""Initialise."""
# Internal variables for caching form argument/coefficient data
self._arguments = None
self._coefficients = None
# --- Accessor interface ---
[docs] def arguments(self):
"""Return all ``Argument`` objects found in form."""
if self._arguments is None:
self._analyze_form_arguments()
return self._arguments
[docs] def coefficients(self):
"""Return all ``Coefficient`` objects found in form."""
if self._coefficients is None:
self._analyze_form_arguments()
return self._coefficients
[docs] def ufl_domain(self):
"""Return the single geometric integration domain occuring in the base form.
Fails if multiple domains are found.
"""
try:
(domain,) = set(self.ufl_domains())
except ValueError:
raise ValueError("%s must have exactly one domain." % type(self).__name__)
# Return the one and only domain
return domain
# --- Operator implementations ---
def __eq__(self, other):
"""Delayed evaluation of the == operator.
Just 'lhs_form == rhs_form' gives an Equation,
while 'bool(lhs_form == rhs_form)' delegates
to lhs_form.equals(rhs_form).
"""
return Equation(self, other)
def __radd__(self, other):
"""Add."""
# Ordering of form additions make no difference
return self.__add__(other)
def __add__(self, other):
"""Add."""
if isinstance(other, numbers.Number) and other == 0:
# Allow adding 0 or 0.0 as a no-op, needed for sum([a,b])
return self
elif isinstance(other, Zero):
# Allow adding ufl Zero as a no-op, needed for sum([a,b])
return self
elif isinstance(other, ZeroBaseForm):
# Simplify addition with ZeroBaseForm
return self
# For `ZeroBaseForm(...) + B` with B a BaseForm.
# We could overwrite ZeroBaseForm.__add__ but that implies
# duplicating cases with `0` and `ufl.Zero`.
elif isinstance(self, ZeroBaseForm):
# Simplify addition with ZeroBaseForm
return other
elif isinstance(other, BaseForm):
# Add integrals from both forms
return FormSum((self, 1), (other, 1))
else:
# Let python protocols do their job if we don't handle it
return NotImplemented
def __sub__(self, other):
"""Subtract other form from this one."""
return self + (-other)
def __rsub__(self, other):
"""Subtract this form from other."""
return other + (-self)
def __neg__(self):
"""Negate all integrals in form.
This enables the handy "-form" syntax for e.g. the
linearized system (J, -F) from a nonlinear form F.
"""
if isinstance(self, ZeroBaseForm):
# `-` doesn't change anything for ZeroBaseForm.
# This also facilitates simplifying FormSum containing ZeroBaseForm objects.
return self
return FormSum((self, -1))
def __rmul__(self, scalar):
"""Multiply all integrals in form with constant scalar value."""
# This enables the handy "0*form" or "dt*form" syntax
if is_scalar_constant_expression(scalar):
return FormSum((self, scalar))
return NotImplemented
def __mul__(self, coefficient):
"""Take the action of this form on the given coefficient."""
if isinstance(coefficient, Expr):
from ufl.formoperators import action
return action(self, coefficient)
return NotImplemented
def __ne__(self, other):
"""Immediately evaluate the != operator (as opposed to the == operator)."""
return not self.equals(other)
def __call__(self, x):
"""Take the action of this form on ``x``."""
from ufl.formoperators import action
return action(self, x)
def _ufl_compute_hash_(self):
"""Compute the hash."""
# Ensure compatibility with MultiFunction
# `hash(self)` will call the `__hash__` method of the subclass.
return hash(self)
def _ufl_expr_reconstruct_(self, *operands):
"""Return a new object of the same type with new operands."""
return type(self)(*operands)
__matmul__ = __mul__
[docs]@ufl_type()
class Form(BaseForm):
"""Description of a weak form consisting of a sum of integrals over subdomains."""
__slots__ = (
# --- List of Integral objects (a Form is a sum of these
# Integrals, everything else is derived)
"_integrals",
# --- Internal variables for caching various data
"_integration_domains",
"_domain_numbering",
"_subdomain_data",
"_arguments",
"_base_form_operators",
"_coefficients",
"_coefficient_numbering",
"_constants",
"_constant_numbering",
"_terminal_numbering",
"_hash",
"_signature",
# --- Dict that external frameworks can place framework-specific
# data in to be carried with the form
# Never use this internally in ufl!
"_cache",
)
def __init__(self, integrals):
"""Initialise."""
BaseForm.__init__(self)
# Basic input checking (further compatibilty analysis happens
# later)
if not all(isinstance(itg, Integral) for itg in integrals):
raise ValueError("Expecting list of integrals.")
# Store integrals sorted canonically to increase signature
# stability
self._integrals = _sorted_integrals(integrals)
# Internal variables for caching domain data
self._integration_domains = None
self._domain_numbering = None
# Internal variables for caching subdomain data
self._subdomain_data = None
# Internal variables for caching form argument data
self._coefficients = None
self._coefficient_numbering = None
self._constant_numbering = None
self._terminal_numbering = None
# Internal variables for caching base form operator data
self._base_form_operators = None
from ufl.algorithms.analysis import extract_constants
self._constants = extract_constants(self)
# Internal variables for caching of hash and signature after
# first request
self._hash = None
self._signature = None
# Never use this internally in ufl!
self._cache = {}
# --- Accessor interface ---
[docs] def integrals(self):
"""Return a sequence of all integrals in form."""
return self._integrals
[docs] def integrals_by_type(self, integral_type):
"""Return a sequence of all integrals with a particular domain type."""
return tuple(
integral for integral in self.integrals() if integral.integral_type() == integral_type
)
[docs] def integrals_by_domain(self, domain):
"""Return a sequence of all integrals with a particular integration domain."""
return tuple(integral for integral in self.integrals() if integral.ufl_domain() == domain)
[docs] def empty(self):
"""Returns whether the form has no integrals."""
return self.integrals() == ()
[docs] def ufl_domains(self):
"""Return the geometric integration domains occuring in the form.
NB! This does not include domains of coefficients defined on
other meshes.
The return type is a tuple even if only a single domain exists.
"""
if self._integration_domains is None:
self._analyze_domains()
return self._integration_domains
[docs] def ufl_cell(self):
"""Return the single cell this form is defined on.
Fails if multiple cells are found.
"""
return self.ufl_domain().ufl_cell()
[docs] def geometric_dimension(self):
"""Return the geometric dimension shared by all domains and functions in this form."""
gdims = tuple(set(domain.geometric_dimension() for domain in self.ufl_domains()))
if len(gdims) != 1:
raise ValueError(
"Expecting all domains and functions in a form "
f"to share geometric dimension, got {tuple(sorted(gdims))}"
)
return gdims[0]
[docs] def domain_numbering(self):
"""Return a contiguous numbering of domains in a mapping ``{domain:number}``."""
if self._domain_numbering is None:
self._analyze_domains()
return self._domain_numbering
[docs] def subdomain_data(self):
"""Returns a mapping on the form ``{domain:{integral_type: subdomain_data}}``."""
if self._subdomain_data is None:
self._analyze_subdomain_data()
return self._subdomain_data
[docs] def coefficients(self):
"""Return all ``Coefficient`` objects found in form."""
if self._coefficients is None:
self._analyze_form_arguments()
return self._coefficients
[docs] def base_form_operators(self):
"""Return all ``BaseFormOperator`` objects found in form."""
if self._base_form_operators is None:
self._analyze_base_form_operators()
return self._base_form_operators
[docs] def coefficient_numbering(self):
"""Return a contiguous numbering of coefficients in a mapping ``{coefficient:number}``."""
# cyclic import
from ufl.coefficient import Coefficient
if self._coefficient_numbering is None:
self._coefficient_numbering = {
expr: num
for expr, num in self.terminal_numbering().items()
if isinstance(expr, Coefficient)
}
return self._coefficient_numbering
[docs] def constant_numbering(self):
"""Return a contiguous numbering of constants in a mapping ``{constant:number}``."""
if self._constant_numbering is None:
self._constant_numbering = {
expr: num
for expr, num in self.terminal_numbering().items()
if isinstance(expr, Constant)
}
return self._constant_numbering
[docs] def terminal_numbering(self):
"""Return a contiguous numbering for all counted objects in the form.
The returned object is mapping from terminal to its number (an integer).
The numbering is computed per type so :class:`Coefficient`s,
:class:`Constant`s, etc will each be numbered from zero.
"""
# cyclic import
from ufl.algorithms.analysis import extract_type
if self._terminal_numbering is None:
exprs_by_type = defaultdict(set)
for counted_expr in extract_type(self, Counted):
exprs_by_type[counted_expr._counted_class].add(counted_expr)
numbering = {}
for exprs in exprs_by_type.values():
for i, expr in enumerate(sorted_by_count(exprs)):
numbering[expr] = i
self._terminal_numbering = numbering
return self._terminal_numbering
[docs] def signature(self):
"""Signature for use with jit cache (independent of incidental numbering of indices etc)."""
if self._signature is None:
self._compute_signature()
return self._signature
# --- Operator implementations ---
def __hash__(self):
"""Hash."""
if self._hash is None:
self._hash = hash(tuple(hash(itg) for itg in self.integrals()))
return self._hash
def __ne__(self, other):
"""Immediate evaluation of the != operator (as opposed to the == operator)."""
return not self.equals(other)
[docs] def equals(self, other):
"""Evaluate ``bool(lhs_form == rhs_form)``."""
if type(other) is not Form:
return False
if len(self._integrals) != len(other._integrals):
return False
if hash(self) != hash(other):
return False
return all(a == b for a, b in zip(self._integrals, other._integrals))
def __radd__(self, other):
"""Add."""
# Ordering of form additions make no difference
return self.__add__(other)
def __add__(self, other):
"""Add."""
if isinstance(other, Form):
# Add integrals from both forms
return Form(list(chain(self.integrals(), other.integrals())))
if isinstance(other, ZeroBaseForm):
# Simplify addition with ZeroBaseForm
return self
elif isinstance(other, BaseForm):
# Create form sum if form is of other type
return FormSum((self, 1), (other, 1))
elif isinstance(other, (int, float)) and other == 0:
# Allow adding 0 or 0.0 as a no-op, needed for sum([a,b])
return self
elif isinstance(other, Zero) and not (other.ufl_shape or other.ufl_free_indices):
# Allow adding ufl Zero as a no-op, needed for sum([a,b])
return self
else:
# Let python protocols do their job if we don't handle it
return NotImplemented
def __sub__(self, other):
"""Subtract other form from this one."""
return self + (-other)
def __rsub__(self, other):
"""Subtract this form from other."""
return other + (-self)
def __neg__(self):
"""Negate all integrals in form.
This enables the handy "-form" syntax for e.g. the
linearized system (J, -F) from a nonlinear form F.
"""
return Form([-itg for itg in self.integrals()])
def __rmul__(self, scalar):
"""Multiply all integrals in form with constant scalar value."""
# This enables the handy "0*form" or "dt*form" syntax
if is_scalar_constant_expression(scalar):
return Form([scalar * itg for itg in self.integrals()])
return NotImplemented
def __mul__(self, coefficient):
"""UFL form operator: Take the action of this form on the given coefficient."""
if isinstance(coefficient, Expr):
from ufl.formoperators import action
return action(self, coefficient)
return NotImplemented
def __call__(self, *args, **kwargs):
"""UFL form operator: Evaluate form by replacing arguments and coefficients.
Replaces form.arguments() with given positional arguments in
same number and ordering. Number of positional arguments must
be 0 or equal to the number of Arguments in the form.
The optional keyword argument coefficients can be set to a dict
to replace Coefficients with expressions of matching shapes.
Example:
V = FiniteElement("CG", triangle, 1)
v = TestFunction(V)
u = TrialFunction(V)
f = Coefficient(V)
g = Coefficient(V)
a = g*inner(grad(u), grad(v))*dx
M = a(f, f, coefficients={ g: 1 })
Is equivalent to M == grad(f)**2*dx.
"""
repdict = {}
if args:
arguments = self.arguments()
if len(arguments) != len(args):
raise ValueError(f"Need {len(arguments)} arguments to form(), got {len(args)}.")
repdict.update(zip(arguments, args))
coefficients = kwargs.pop("coefficients", None)
if kwargs:
raise ValueError(f"Unknown kwargs {list(kwargs)}")
if coefficients is not None:
coeffs = self.coefficients()
for f in coefficients:
if f in coeffs:
repdict[f] = coefficients[f]
else:
warnings.warn("Coefficient %s is not in form." % ufl_err_str(f))
if repdict:
from ufl.formoperators import replace
return replace(self, repdict)
else:
return self
__matmul__ = __mul__
# --- String conversion functions, for UI purposes only ---
def __str__(self):
"""Compute shorter string representation of form. This can be huge for complicated forms."""
# Warning used for making sure we don't use this in the general pipeline:
# warning("Calling str on form is potentially expensive and
# should be avoided except during debugging.") Not caching this
# because it can be huge
s = "\n + ".join(str(itg) for itg in self.integrals())
return s or "<empty Form>"
def __repr__(self):
"""Compute repr string of form. This can be huge for complicated forms."""
# Warning used for making sure we don't use this in the general pipeline:
# warning("Calling repr on form is potentially expensive and
# should be avoided except during debugging.") Not caching this
# because it can be huge
itgs = ", ".join(repr(itg) for itg in self.integrals())
r = "Form([" + itgs + "])"
return r
# --- Analysis functions, precomputation and caching of various quantities
def _analyze_domains(self):
"""Analyze domains."""
from ufl.domain import join_domains, sort_domains
# Collect unique integration domains
integration_domains = join_domains([itg.ufl_domain() for itg in self._integrals])
# Make canonically ordered list of the domains
self._integration_domains = sort_domains(integration_domains)
# TODO: Not including domains from coefficients and arguments
# here, may need that later
self._domain_numbering = dict((d, i) for i, d in enumerate(self._integration_domains))
def _analyze_subdomain_data(self):
"""Analyze subdomain data."""
integration_domains = self.ufl_domains()
integrals = self.integrals()
# Make clear data structures to collect subdomain data in
subdomain_data = {}
for domain in integration_domains:
subdomain_data[domain] = {}
for integral in integrals:
# Get integral properties
domain = integral.ufl_domain()
it = integral.integral_type()
sd = integral.subdomain_data()
# Collect subdomain data
if subdomain_data[domain].get(it) is None:
subdomain_data[domain][it] = [sd]
else:
subdomain_data[domain][it].append(sd)
self._subdomain_data = subdomain_data
def _analyze_form_arguments(self):
"""Analyze which Argument and Coefficient objects can be found in the form."""
from ufl.algorithms.analysis import extract_arguments_and_coefficients
arguments, coefficients = extract_arguments_and_coefficients(self)
# Define canonical numbering of arguments and coefficients
self._arguments = tuple(sorted(set(arguments), key=lambda x: x.number()))
self._coefficients = tuple(sorted(set(coefficients), key=lambda x: x.count()))
def _analyze_base_form_operators(self):
"""Analyze which BaseFormOperator objects can be found in the form."""
from ufl.algorithms.analysis import extract_base_form_operators
base_form_ops = extract_base_form_operators(self)
self._base_form_operators = tuple(sorted(base_form_ops, key=lambda x: x.count()))
def _compute_renumbering(self):
"""Compute renumbering."""
# Include integration domains and coefficients in renumbering
dn = self.domain_numbering()
tn = self.terminal_numbering()
renumbering = {}
renumbering.update(dn)
renumbering.update(tn)
# Add domains of coefficients, these may include domains not
# among integration domains
k = len(dn)
for c in self.coefficients():
d = extract_unique_domain(c)
if d is not None and d not in renumbering:
renumbering[d] = k
k += 1
# Add domains of arguments, these may include domains not
# among integration domains
for a in self._arguments:
d = a.ufl_function_space().ufl_domain()
if d is not None and d not in renumbering:
renumbering[d] = k
k += 1
# Add domains of constants, these may include domains not
# among integration domains
for c in self._constants:
d = extract_unique_domain(c)
if d is not None and d not in renumbering:
renumbering[d] = k
k += 1
return renumbering
def _compute_signature(self):
"""Compute signature."""
from ufl.algorithms.signature import compute_form_signature
self._signature = compute_form_signature(self, self._compute_renumbering())
[docs]def as_form(form):
"""Convert to form if not a form, otherwise return form."""
if not isinstance(form, BaseForm) and form != 0:
raise ValueError(f"Unable to convert object to a UFL form: {ufl_err_str(form)}")
return form
[docs]@ufl_type()
class FormSum(BaseForm):
"""Form sum.
Description of a weighted sum of variational forms and form-like objects
components is the list of Forms to be summed
arg_weights is a list of tuples of component index and weight
"""
__slots__ = (
"_arguments",
"_coefficients",
"_weights",
"_components",
"ufl_operands",
"_domains",
"_domain_numbering",
"_hash",
)
_ufl_required_methods_ = "_analyze_form_arguments"
def __new__(cls, *args, **kwargs):
"""Create a new FormSum."""
# All the components are `ZeroBaseForm`
if all(component == 0 for component, _ in args):
# Assume that the arguments of all the components have
# consistent with each other and select the first one to
# define the arguments of `ZeroBaseForm`.
# This might not always be true but `ZeroBaseForm`'s
# arguments are not checked anywhere because we can't
# reliably always infer them.
((arg, _), *_) = args
arguments = arg.arguments()
return ZeroBaseForm(arguments)
return super(FormSum, cls).__new__(cls)
def __init__(self, *components):
"""Initialise."""
BaseForm.__init__(self)
# Remove `ZeroBaseForm` components
filtered_components = [(component, w) for component, w in components if component != 0]
weights = []
full_components = []
for component, w in filtered_components:
if isinstance(component, FormSum):
full_components.extend(component.components())
weights.extend([w * wc for wc in component.weights()])
else:
full_components.append(component)
weights.append(w)
self._arguments = None
self._coefficients = None
self._domains = None
self._domain_numbering = None
self._hash = None
self._weights = weights
self._components = full_components
self._sum_variational_components()
self.ufl_operands = self._components
def _sum_variational_components(self):
"""Sum variational components."""
var_forms = None
other_components = []
new_weights = []
for i, component in enumerate(self._components):
if isinstance(component, Form):
if var_forms:
var_forms = var_forms + (self._weights[i] * component)
else:
var_forms = self._weights[i] * component
else:
other_components.append(component)
new_weights.append(self._weights[i])
if var_forms:
other_components.insert(0, var_forms)
new_weights.insert(0, 1)
self._components = other_components
self._weights = new_weights
def _analyze_form_arguments(self):
"""Return all ``Argument`` objects found in form."""
arguments = []
coefficients = []
for component in self._components:
arguments.extend(component.arguments())
coefficients.extend(component.coefficients())
# Define canonical numbering of arguments and coefficients
self._arguments = tuple(sorted(set(arguments), key=lambda x: x.number()))
self._coefficients = tuple(sorted(set(coefficients), key=lambda x: x.count()))
def _analyze_domains(self):
"""Analyze which domains can be found in FormSum."""
from ufl.domain import join_domains
# Collect unique domains
self._domains = join_domains(
chain.from_iterable(e.ufl_domains() for e in self.ufl_operands)
)
[docs] def ufl_domains(self):
"""Return all domains found in the base form."""
if self._domains is None:
self._analyze_domains()
return self._domains
def __hash__(self):
"""Hash."""
if self._hash is None:
self._hash = hash(tuple(hash(component) for component in self.components()))
return self._hash
[docs] def equals(self, other):
"""Evaluate ``bool(lhs_form == rhs_form)``."""
if type(other) is not FormSum:
return False
if self is other:
return True
return len(self.components()) == len(other.components()) and all(
a == b for a, b in zip(self.components(), other.components())
)
def __str__(self):
"""Compute shorter string representation of form. This can be huge for complicated forms."""
# Warning used for making sure we don't use this in the general pipeline:
# warning("Calling str on form is potentially expensive and
# should be avoided except during debugging.")
# Not caching this because it can be huge
s = "\n + ".join(str(component) for component in self.components())
return s or "<empty FormSum>"
def __repr__(self):
"""Compute repr string of form. This can be huge for complicated forms."""
# Warning used for making sure we don't use this in the general pipeline:
# warning("Calling repr on form is potentially expensive and
# should be avoided except during debugging.")
# Not caching this because it can be huge
itgs = ", ".join(repr(component) for component in self.components())
r = "FormSum([" + itgs + "])"
return r
[docs]@ufl_type()
class ZeroBaseForm(BaseForm):
"""Description of a zero base form.
ZeroBaseForm is idempotent with respect to assembly and is mostly
used for sake of simplifying base-form expressions.
"""
__slots__ = (
"_arguments",
"_coefficients",
"ufl_operands",
"_domains",
"_hash",
# Pyadjoint compatibility
"form",
)
def __init__(self, arguments):
"""Initialise."""
BaseForm.__init__(self)
self._arguments = arguments
self.ufl_operands = arguments
self._hash = None
self.form = None
def _analyze_form_arguments(self):
"""Analyze form arguments."""
# `self._arguments` is already set in `BaseForm.__init__`
self._coefficients = ()
def _analyze_domains(self):
"""Analyze which domains can be found in ZeroBaseForm."""
from ufl.domain import join_domains
# Collect unique domains
self._domains = join_domains(
chain.from_iterable(e.ufl_domains() for e in self.ufl_operands)
)
[docs] def ufl_domains(self):
"""Return all domains found in the base form."""
if self._domains is None:
self._analyze_domains()
return self._domains
def __ne__(self, other):
"""Overwrite BaseForm.__neq__ which relies on `equals`."""
return not self == other
def __eq__(self, other):
"""Check equality."""
if type(other) is ZeroBaseForm:
if self is other:
return True
return self._arguments == other._arguments
elif isinstance(other, (int, float)):
return other == 0
else:
return False
def __str__(self):
"""Format as a string."""
return "ZeroBaseForm(%s)" % (", ".join(str(arg) for arg in self._arguments))
def __repr__(self):
"""Representation."""
return "ZeroBaseForm(%s)" % (", ".join(repr(arg) for arg in self._arguments))
def __hash__(self):
"""Hash."""
if self._hash is None:
self._hash = hash(("ZeroBaseForm", hash(self._arguments)))
return self._hash