Source code for ufl.sobolevspace

"""Sobolev spaces.

This module defines a symbolic heirarchy of Sobolev spaces to enable
symbolic reasoning about the spaces in which finite elements lie.
"""
# Copyright (C) 2014 Imperial College London and others
#
# This file is part of UFL (https://www.fenicsproject.org)
#
# SPDX-License-Identifier:    LGPL-3.0-or-later
#
# Written by David Ham 2014
#
# Modified by Martin Alnaes 2014
# Modified by Lizao Li 2015
# Modified by Thomas Gibson 2017

from functools import total_ordering
from math import inf, isinf

__all_classes__ = ["SobolevSpace", "DirectionalSobolevSpace"]


[docs]@total_ordering class SobolevSpace(object): """Symbolic representation of a Sobolev space. This implements a subset of the methods of a Python set so that finite elements and other Sobolev spaces can be tested for inclusion. """ def __init__(self, name, parents=None): """Instantiate a SobolevSpace object. Args: name: The name of this space, parents: A set of Sobolev spaces of which this space is a subspace. """ self.name = name p = frozenset(parents or []) # Ensure that the inclusion operations are transitive. self.parents = p.union(*[p_.parents for p_ in p]) self._order = { "L2": 0, "H1": 1, "H2": 2, "HInf": inf, # Order for the elements below is taken from # its parent Sobolev space "HDiv": 0, "HCurl": 0, "HEin": 0, "HDivDiv": 0, "DirectionalH": 0, }[self.name] def __str__(self): """Format as a string.""" return self.name def __repr__(self): """Representation.""" return f"SobolevSpace({self.name!r}, {list(self.parents)!r})" def __eq__(self, other): """Check equality.""" return isinstance(other, SobolevSpace) and self.name == other.name def __ne__(self, other): """Not equal.""" return not self == other def __hash__(self): """Hash.""" return hash(("SobolevSpace", self.name)) def __getitem__(self, spatial_index): """Returns the Sobolev space associated with a particular spatial coordinate.""" return self def __contains__(self, other): """Implement `fe in s` where `fe` is a FiniteElement and `s` is a SobolevSpace.""" if isinstance(other, SobolevSpace): raise TypeError( "Unable to test for inclusion of a SobolevSpace in another SobolevSpace. " "Did you mean to use <= instead?" ) return other.sobolev_space == self or self in other.sobolev_space.parents def __lt__(self, other): """In common with intrinsic Python sets, < indicates "is a proper subset of".""" return other in self.parents
[docs]@total_ordering class DirectionalSobolevSpace(SobolevSpace): """Directional Sobolev space. Symbolic representation of a Sobolev space with varying smoothness in different spatial directions. """ def __init__(self, orders): """Instantiate a DirectionalSobolevSpace object. Args: orders: an iterable of orders of weak derivatives, where the position denotes in what spatial variable the smoothness requirement is enforced. """ assert all( isinstance(x, int) or isinf(x) for x in orders ), "Order must be an integer or infinity." name = "DirectionalH" parents = [L2] super(DirectionalSobolevSpace, self).__init__(name, parents) self._orders = tuple(orders) self._spatial_indices = range(len(self._orders)) def __getitem__(self, spatial_index): """Returns the Sobolev space associated with a particular spatial coordinate.""" if spatial_index not in range(len(self._orders)): raise IndexError("Spatial index out of range.") spaces = {0: L2, 1: H1, 2: H2, inf: HInf} return spaces[self._orders[spatial_index]] def __contains__(self, other): """Check if one space is contained in another. Implement `fe in s` where `fe` is a FiniteElement and `s` is a DirectionalSobolevSpace. """ if isinstance(other, SobolevSpace): raise TypeError( "Unable to test for inclusion of a SobolevSpace in another SobolevSpace. " "Did you mean to use <= instead?" ) return other.sobolev_space == self or all( self[i] in other.sobolev_space.parents for i in self._spatial_indices ) def __eq__(self, other): """Check equality.""" if isinstance(other, DirectionalSobolevSpace): return self._orders == other._orders return all(self[i] == other for i in self._spatial_indices) def __lt__(self, other): """In common with intrinsic Python sets, < indicates "is a proper subset of.""" if isinstance(other, DirectionalSobolevSpace): if self._spatial_indices != other._spatial_indices: return False return any(self._orders[i] > other._orders[i] for i in self._spatial_indices) if other in [HDiv, HCurl]: return all(self._orders[i] >= 1 for i in self._spatial_indices) elif other.name in ["HDivDiv", "HEin"]: # Don't know how these spaces compare return NotImplementedError(f"Don't know how to compare with {other.name}") else: return any(self._orders[i] > other._order for i in self._spatial_indices) def __str__(self): """Format as a string.""" return f"{self.name}({', '.join(map(str, self._orders))})"
L2 = SobolevSpace("L2") HDiv = SobolevSpace("HDiv", [L2]) HCurl = SobolevSpace("HCurl", [L2]) H1 = SobolevSpace("H1", [HDiv, HCurl, L2]) H2 = SobolevSpace("H2", [H1, HDiv, HCurl, L2]) HInf = SobolevSpace("HInf", [H2, H1, HDiv, HCurl, L2]) HEin = SobolevSpace("HEin", [L2]) HDivDiv = SobolevSpace("HDivDiv", [L2])