Source code for ufl.form
"""The Form class."""
# Copyright (C) 2008-2016 Martin Sandve Alnæs
#
# This file is part of UFL (https://www.fenicsproject.org)
#
# SPDX-License-Identifier: LGPL-3.0-or-later
#
# Modified by Anders Logg, 2009-2011.
# Modified by Massimiliano Leoni, 2016.
# Modified by Cecile Daversin-Catty, 2018.
# Modified by Nacime Bouziani, 2020.
# Modified by Jørgen S. Dokken 2023.
import numbers
import warnings
from collections import defaultdict
from itertools import chain
from ufl.checks import is_scalar_constant_expression
from ufl.constant import Constant
from ufl.constantvalue import Zero
from ufl.core.expr import Expr, ufl_err_str
from ufl.core.ufl_type import UFLType, ufl_type
from ufl.domain import extract_unique_domain, sort_domains
from ufl.equation import Equation
from ufl.integral import Integral
from ufl.utils.counted import Counted
from ufl.utils.sorting import sorted_by_count
# Export list for ufl.classes
__all_classes__ = ["Form", "BaseForm", "ZeroBaseForm"]
# --- The Form class, representing a complete variational form or functional ---
def _sorted_integrals(integrals):
"""Sort integrals for a stable signature computation.
Sort integrals by domain id, integral type, subdomain id for a more
stable signature computation.
"""
# Group integrals in multilevel dict by keys
# [domain][integral_type][subdomain_id]
integrals_dict = defaultdict(lambda: defaultdict(lambda: defaultdict(list)))
for integral in integrals:
d = integral.ufl_domain()
if d is None:
raise ValueError(
"Each integral in a form must have a uniquely defined integration domain."
)
it = integral.integral_type()
si = integral.subdomain_id()
integrals_dict[d][it][si] += [integral]
all_integrals = []
def keyfunc(item):
if isinstance(item, numbers.Integral):
sid_int = item
else:
# As subdomain ids can be either int or tuples, we need to compare them
sid_int = tuple(-1 if i == "otherwise" else i for i in item)
return (type(item).__name__, sid_int)
# Order integrals canonically to increase signature stability
for d in sort_domains(integrals_dict):
for it in sorted(integrals_dict[d]): # str is sortable
for si in sorted(integrals_dict[d][it], key=keyfunc):
unsorted_integrals = integrals_dict[d][it][si]
# TODO: At this point we could order integrals by
# metadata and integrand, or even add the
# integrands with the same metadata. This is done
# in accumulate_integrands_with_same_metadata in
# algorithms/domain_analysis.py and would further
# increase the signature stability.
all_integrals.extend(unsorted_integrals)
# integrals_dict[d][it][si] = unsorted_integrals
return tuple(all_integrals) # integrals_dict
[docs]@ufl_type()
class BaseForm(object, metaclass=UFLType):
"""Description of an object containing arguments."""
# Slots is kept empty to enable multiple inheritance with other
# classes
__slots__ = ()
_ufl_is_abstract_ = True
_ufl_required_methods_ = ("_analyze_form_arguments", "_analyze_domains", "ufl_domains")
def __init__(self):
"""Initialise."""
# Internal variables for caching form argument/coefficient data
self._arguments = None
self._coefficients = None
# --- Accessor interface ---
[docs] def arguments(self):
"""Return all ``Argument`` objects found in form."""
if self._arguments is None:
self._analyze_form_arguments()
return self._arguments
[docs] def coefficients(self):
"""Return all ``Coefficient`` objects found in form."""
if self._coefficients is None:
self._analyze_form_arguments()
return self._coefficients
[docs] def ufl_domain(self):
"""Return the single geometric integration domain occuring in the base form.
Fails if multiple domains are found.
"""
if self._domains is None:
self._analyze_domains()
if len(self._domains) > 1:
raise ValueError("%s must have exactly one domain." % type(self).__name__)
# Return the single geometric domain
return self._domains[0]
# --- Operator implementations ---
def __eq__(self, other):
"""Delayed evaluation of the == operator.
Just 'lhs_form == rhs_form' gives an Equation,
while 'bool(lhs_form == rhs_form)' delegates
to lhs_form.equals(rhs_form).
"""
return Equation(self, other)
def __radd__(self, other):
"""Add."""
# Ordering of form additions make no difference
return self.__add__(other)
def __add__(self, other):
"""Add."""
if isinstance(other, (int, float)) and other == 0:
# Allow adding 0 or 0.0 as a no-op, needed for sum([a,b])
return self
elif isinstance(other, Zero):
# Allow adding ufl Zero as a no-op, needed for sum([a,b])
return self
elif isinstance(other, ZeroBaseForm):
# Simplify addition with ZeroBaseForm
return self
# For `ZeroBaseForm(...) + B` with B a BaseForm.
# We could overwrite ZeroBaseForm.__add__ but that implies
# duplicating cases with `0` and `ufl.Zero`.
elif isinstance(self, ZeroBaseForm):
# Simplify addition with ZeroBaseForm
return other
elif isinstance(other, BaseForm):
# Add integrals from both forms
return FormSum((self, 1), (other, 1))
else:
# Let python protocols do their job if we don't handle it
return NotImplemented
def __sub__(self, other):
"""Subtract other form from this one."""
return self + (-other)
def __rsub__(self, other):
"""Subtract this form from other."""
return other + (-self)
def __neg__(self):
"""Negate all integrals in form.
This enables the handy "-form" syntax for e.g. the
linearized system (J, -F) from a nonlinear form F.
"""
if isinstance(self, ZeroBaseForm):
# `-` doesn't change anything for ZeroBaseForm.
# This also facilitates simplifying FormSum containing ZeroBaseForm objects.
return self
return FormSum((self, -1))
def __rmul__(self, scalar):
"""Multiply all integrals in form with constant scalar value."""
# This enables the handy "0*form" or "dt*form" syntax
if is_scalar_constant_expression(scalar):
return FormSum((self, scalar))
return NotImplemented
def __mul__(self, coefficient):
"""Take the action of this form on the given coefficient."""
if isinstance(coefficient, Expr):
from ufl.formoperators import action
return action(self, coefficient)
return NotImplemented
def __ne__(self, other):
"""Immediately evaluate the != operator (as opposed to the == operator)."""
return not self.equals(other)
def __call__(self, x):
"""Take the action of this form on ``x``."""
from ufl.formoperators import action
return action(self, x)
def _ufl_compute_hash_(self):
"""Compute the hash."""
# Ensure compatibility with MultiFunction
# `hash(self)` will call the `__hash__` method of the subclass.
return hash(self)
def _ufl_expr_reconstruct_(self, *operands):
"""Return a new object of the same type with new operands."""
return type(self)(*operands)
__matmul__ = __mul__
[docs]@ufl_type()
class Form(BaseForm):
"""Description of a weak form consisting of a sum of integrals over subdomains."""
__slots__ = (
# --- List of Integral objects (a Form is a sum of these
# Integrals, everything else is derived)
"_integrals",
# --- Internal variables for caching various data
"_integration_domains",
"_domain_numbering",
"_subdomain_data",
"_arguments",
"_base_form_operators",
"_coefficients",
"_coefficient_numbering",
"_constants",
"_constant_numbering",
"_terminal_numbering",
"_hash",
"_signature",
# --- Dict that external frameworks can place framework-specific
# data in to be carried with the form
# Never use this internally in ufl!
"_cache",
)
def __init__(self, integrals):
"""Initialise."""
BaseForm.__init__(self)
# Basic input checking (further compatibilty analysis happens
# later)
if not all(isinstance(itg, Integral) for itg in integrals):
raise ValueError("Expecting list of integrals.")
# Store integrals sorted canonically to increase signature
# stability
self._integrals = _sorted_integrals(integrals)
# Internal variables for caching domain data
self._integration_domains = None
self._domain_numbering = None
# Internal variables for caching subdomain data
self._subdomain_data = None
# Internal variables for caching form argument data
self._coefficients = None
self._coefficient_numbering = None
self._constant_numbering = None
self._terminal_numbering = None
# Internal variables for caching base form operator data
self._base_form_operators = None
from ufl.algorithms.analysis import extract_constants
self._constants = extract_constants(self)
# Internal variables for caching of hash and signature after
# first request
self._hash = None
self._signature = None
# Never use this internally in ufl!
self._cache = {}
# --- Accessor interface ---
[docs] def integrals(self):
"""Return a sequence of all integrals in form."""
return self._integrals
[docs] def integrals_by_type(self, integral_type):
"""Return a sequence of all integrals with a particular domain type."""
return tuple(
integral for integral in self.integrals() if integral.integral_type() == integral_type
)
[docs] def integrals_by_domain(self, domain):
"""Return a sequence of all integrals with a particular integration domain."""
return tuple(integral for integral in self.integrals() if integral.ufl_domain() == domain)
[docs] def empty(self):
"""Returns whether the form has no integrals."""
return self.integrals() == ()
[docs] def ufl_domains(self):
"""Return the geometric integration domains occuring in the form.
NB! This does not include domains of coefficients defined on
other meshes.
The return type is a tuple even if only a single domain exists.
"""
if self._integration_domains is None:
self._analyze_domains()
return self._integration_domains
[docs] def ufl_cell(self):
"""Return the single cell this form is defined on.
Fails if multiple cells are found.
"""
return self.ufl_domain().ufl_cell()
[docs] def ufl_domain(self):
"""Return the single geometric integration domain occuring in the form.
Fails if multiple domains are found.
NB! This does not include domains of coefficients defined on
other meshes, look at form data for that additional information.
"""
# Collect all domains
domains = self.ufl_domains()
# Check that all are equal TODO: don't return more than one if
# all are equal?
if not all(domain == domains[0] for domain in domains):
raise ValueError(
"Calling Form.ufl_domain() is only valid if all integrals share domain."
)
# Return the one and only domain
return domains[0]
[docs] def geometric_dimension(self):
"""Return the geometric dimension shared by all domains and functions in this form."""
gdims = tuple(set(domain.geometric_dimension() for domain in self.ufl_domains()))
if len(gdims) != 1:
raise ValueError(
"Expecting all domains and functions in a form "
f"to share geometric dimension, got {tuple(sorted(gdims))}"
)
return gdims[0]
[docs] def domain_numbering(self):
"""Return a contiguous numbering of domains in a mapping ``{domain:number}``."""
if self._domain_numbering is None:
self._analyze_domains()
return self._domain_numbering
[docs] def subdomain_data(self):
"""Returns a mapping on the form ``{domain:{integral_type: subdomain_data}}``."""
if self._subdomain_data is None:
self._analyze_subdomain_data()
return self._subdomain_data
[docs] def max_subdomain_ids(self):
"""Returns a mapping on the form ``{domain:{integral_type:max_subdomain_id}}``."""
if self._max_subdomain_ids is None:
self._analyze_subdomain_data()
return self._max_subdomain_ids
[docs] def coefficients(self):
"""Return all ``Coefficient`` objects found in form."""
if self._coefficients is None:
self._analyze_form_arguments()
return self._coefficients
[docs] def base_form_operators(self):
"""Return all ``BaseFormOperator`` objects found in form."""
if self._base_form_operators is None:
self._analyze_base_form_operators()
return self._base_form_operators
[docs] def coefficient_numbering(self):
"""Return a contiguous numbering of coefficients in a mapping ``{coefficient:number}``."""
# cyclic import
from ufl.coefficient import Coefficient
if self._coefficient_numbering is None:
self._coefficient_numbering = {
expr: num
for expr, num in self.terminal_numbering().items()
if isinstance(expr, Coefficient)
}
return self._coefficient_numbering
[docs] def constant_numbering(self):
"""Return a contiguous numbering of constants in a mapping ``{constant:number}``."""
if self._constant_numbering is None:
self._constant_numbering = {
expr: num
for expr, num in self.terminal_numbering().items()
if isinstance(expr, Constant)
}
return self._constant_numbering
[docs] def terminal_numbering(self):
"""Return a contiguous numbering for all counted objects in the form.
The returned object is mapping from terminal to its number (an integer).
The numbering is computed per type so :class:`Coefficient`s,
:class:`Constant`s, etc will each be numbered from zero.
"""
# cyclic import
from ufl.algorithms.analysis import extract_type
if self._terminal_numbering is None:
exprs_by_type = defaultdict(set)
for counted_expr in extract_type(self, Counted):
exprs_by_type[counted_expr._counted_class].add(counted_expr)
numbering = {}
for exprs in exprs_by_type.values():
for i, expr in enumerate(sorted_by_count(exprs)):
numbering[expr] = i
self._terminal_numbering = numbering
return self._terminal_numbering
[docs] def signature(self):
"""Signature for use with jit cache (independent of incidental numbering of indices etc)."""
if self._signature is None:
self._compute_signature()
return self._signature
# --- Operator implementations ---
def __hash__(self):
"""Hash."""
if self._hash is None:
self._hash = hash(tuple(hash(itg) for itg in self.integrals()))
return self._hash
def __ne__(self, other):
"""Immediate evaluation of the != operator (as opposed to the == operator)."""
return not self.equals(other)
[docs] def equals(self, other):
"""Evaluate ``bool(lhs_form == rhs_form)``."""
if type(other) is not Form:
return False
if len(self._integrals) != len(other._integrals):
return False
if hash(self) != hash(other):
return False
return all(a == b for a, b in zip(self._integrals, other._integrals))
def __radd__(self, other):
"""Add."""
# Ordering of form additions make no difference
return self.__add__(other)
def __add__(self, other):
"""Add."""
if isinstance(other, Form):
# Add integrals from both forms
return Form(list(chain(self.integrals(), other.integrals())))
if isinstance(other, ZeroBaseForm):
# Simplify addition with ZeroBaseForm
return self
elif isinstance(other, BaseForm):
# Create form sum if form is of other type
return FormSum((self, 1), (other, 1))
elif isinstance(other, (int, float)) and other == 0:
# Allow adding 0 or 0.0 as a no-op, needed for sum([a,b])
return self
elif isinstance(other, Zero) and not (other.ufl_shape or other.ufl_free_indices):
# Allow adding ufl Zero as a no-op, needed for sum([a,b])
return self
else:
# Let python protocols do their job if we don't handle it
return NotImplemented
def __sub__(self, other):
"""Subtract other form from this one."""
return self + (-other)
def __rsub__(self, other):
"""Subtract this form from other."""
return other + (-self)
def __neg__(self):
"""Negate all integrals in form.
This enables the handy "-form" syntax for e.g. the
linearized system (J, -F) from a nonlinear form F.
"""
return Form([-itg for itg in self.integrals()])
def __rmul__(self, scalar):
"""Multiply all integrals in form with constant scalar value."""
# This enables the handy "0*form" or "dt*form" syntax
if is_scalar_constant_expression(scalar):
return Form([scalar * itg for itg in self.integrals()])
return NotImplemented
def __mul__(self, coefficient):
"""UFL form operator: Take the action of this form on the given coefficient."""
if isinstance(coefficient, Expr):
from ufl.formoperators import action
return action(self, coefficient)
return NotImplemented
def __call__(self, *args, **kwargs):
"""UFL form operator: Evaluate form by replacing arguments and coefficients.
Replaces form.arguments() with given positional arguments in
same number and ordering. Number of positional arguments must
be 0 or equal to the number of Arguments in the form.
The optional keyword argument coefficients can be set to a dict
to replace Coefficients with expressions of matching shapes.
Example:
V = FiniteElement("CG", triangle, 1)
v = TestFunction(V)
u = TrialFunction(V)
f = Coefficient(V)
g = Coefficient(V)
a = g*inner(grad(u), grad(v))*dx
M = a(f, f, coefficients={ g: 1 })
Is equivalent to M == grad(f)**2*dx.
"""
repdict = {}
if args:
arguments = self.arguments()
if len(arguments) != len(args):
raise ValueError(f"Need {len(arguments)} arguments to form(), got {len(args)}.")
repdict.update(zip(arguments, args))
coefficients = kwargs.pop("coefficients", None)
if kwargs:
raise ValueError(f"Unknown kwargs {list(kwargs)}")
if coefficients is not None:
coeffs = self.coefficients()
for f in coefficients:
if f in coeffs:
repdict[f] = coefficients[f]
else:
warnings.warn("Coefficient %s is not in form." % ufl_err_str(f))
if repdict:
from ufl.formoperators import replace
return replace(self, repdict)
else:
return self
__matmul__ = __mul__
# --- String conversion functions, for UI purposes only ---
def __str__(self):
"""Compute shorter string representation of form. This can be huge for complicated forms."""
# Warning used for making sure we don't use this in the general pipeline:
# warning("Calling str on form is potentially expensive and
# should be avoided except during debugging.") Not caching this
# because it can be huge
s = "\n + ".join(str(itg) for itg in self.integrals())
return s or "<empty Form>"
def __repr__(self):
"""Compute repr string of form. This can be huge for complicated forms."""
# Warning used for making sure we don't use this in the general pipeline:
# warning("Calling repr on form is potentially expensive and
# should be avoided except during debugging.") Not caching this
# because it can be huge
itgs = ", ".join(repr(itg) for itg in self.integrals())
r = "Form([" + itgs + "])"
return r
# --- Analysis functions, precomputation and caching of various quantities
def _analyze_domains(self):
"""Analyze domains."""
from ufl.domain import join_domains, sort_domains
# Collect unique integration domains
integration_domains = join_domains([itg.ufl_domain() for itg in self._integrals])
# Make canonically ordered list of the domains
self._integration_domains = sort_domains(integration_domains)
# TODO: Not including domains from coefficients and arguments
# here, may need that later
self._domain_numbering = dict((d, i) for i, d in enumerate(self._integration_domains))
def _analyze_subdomain_data(self):
"""Analyze subdomain data."""
integration_domains = self.ufl_domains()
integrals = self.integrals()
# Make clear data structures to collect subdomain data in
subdomain_data = {}
for domain in integration_domains:
subdomain_data[domain] = {}
for integral in integrals:
# Get integral properties
domain = integral.ufl_domain()
it = integral.integral_type()
sd = integral.subdomain_data()
# Collect subdomain data
if subdomain_data[domain].get(it) is None:
subdomain_data[domain][it] = [sd]
else:
subdomain_data[domain][it].append(sd)
self._subdomain_data = subdomain_data
def _analyze_form_arguments(self):
"""Analyze which Argument and Coefficient objects can be found in the form."""
from ufl.algorithms.analysis import extract_arguments_and_coefficients
arguments, coefficients = extract_arguments_and_coefficients(self)
# Define canonical numbering of arguments and coefficients
self._arguments = tuple(sorted(set(arguments), key=lambda x: x.number()))
self._coefficients = tuple(sorted(set(coefficients), key=lambda x: x.count()))
def _analyze_base_form_operators(self):
"""Analyze which BaseFormOperator objects can be found in the form."""
from ufl.algorithms.analysis import extract_base_form_operators
base_form_ops = extract_base_form_operators(self)
self._base_form_operators = tuple(sorted(base_form_ops, key=lambda x: x.count()))
def _compute_renumbering(self):
"""Compute renumbering."""
# Include integration domains and coefficients in renumbering
dn = self.domain_numbering()
tn = self.terminal_numbering()
renumbering = {}
renumbering.update(dn)
renumbering.update(tn)
# Add domains of coefficients, these may include domains not
# among integration domains
k = len(dn)
for c in self.coefficients():
d = extract_unique_domain(c)
if d is not None and d not in renumbering:
renumbering[d] = k
k += 1
# Add domains of arguments, these may include domains not
# among integration domains
for a in self._arguments:
d = a.ufl_function_space().ufl_domain()
if d is not None and d not in renumbering:
renumbering[d] = k
k += 1
# Add domains of constants, these may include domains not
# among integration domains
for c in self._constants:
d = extract_unique_domain(c)
if d is not None and d not in renumbering:
renumbering[d] = k
k += 1
return renumbering
def _compute_signature(self):
"""Compute signature."""
from ufl.algorithms.signature import compute_form_signature
self._signature = compute_form_signature(self, self._compute_renumbering())
[docs]def as_form(form):
"""Convert to form if not a form, otherwise return form."""
if not isinstance(form, BaseForm) and form != 0:
raise ValueError(f"Unable to convert object to a UFL form: {ufl_err_str(form)}")
return form
[docs]@ufl_type()
class FormSum(BaseForm):
"""Form sum.
Description of a weighted sum of variational forms and form-like objects
components is the list of Forms to be summed
arg_weights is a list of tuples of component index and weight
"""
__slots__ = (
"_arguments",
"_coefficients",
"_weights",
"_components",
"ufl_operands",
"_domains",
"_domain_numbering",
"_hash",
)
_ufl_required_methods_ = "_analyze_form_arguments"
def __new__(cls, *args, **kwargs):
"""Create a new FormSum."""
# All the components are `ZeroBaseForm`
if all(component == 0 for component, _ in args):
# Assume that the arguments of all the components have
# consistent with each other and select the first one to
# define the arguments of `ZeroBaseForm`.
# This might not always be true but `ZeroBaseForm`'s
# arguments are not checked anywhere because we can't
# reliably always infer them.
((arg, _), *_) = args
arguments = arg.arguments()
return ZeroBaseForm(arguments)
return super(FormSum, cls).__new__(cls)
def __init__(self, *components):
"""Initialise."""
BaseForm.__init__(self)
# Remove `ZeroBaseForm` components
filtered_components = [(component, w) for component, w in components if component != 0]
weights = []
full_components = []
for component, w in filtered_components:
if isinstance(component, FormSum):
full_components.extend(component.components())
weights.extend([w * wc for wc in component.weights()])
else:
full_components.append(component)
weights.append(w)
self._arguments = None
self._coefficients = None
self._domains = None
self._domain_numbering = None
self._hash = None
self._weights = weights
self._components = full_components
self._sum_variational_components()
self.ufl_operands = self._components
def _sum_variational_components(self):
"""Sum variational components."""
var_forms = None
other_components = []
new_weights = []
for i, component in enumerate(self._components):
if isinstance(component, Form):
if var_forms:
var_forms = var_forms + (self._weights[i] * component)
else:
var_forms = self._weights[i] * component
else:
other_components.append(component)
new_weights.append(self._weights[i])
if var_forms:
other_components.insert(0, var_forms)
new_weights.insert(0, 1)
self._components = other_components
self._weights = new_weights
def _analyze_form_arguments(self):
"""Return all ``Argument`` objects found in form."""
arguments = []
coefficients = []
for component in self._components:
arguments.extend(component.arguments())
coefficients.extend(component.coefficients())
# Define canonical numbering of arguments and coefficients
self._arguments = tuple(sorted(set(arguments), key=lambda x: x.number()))
self._coefficients = tuple(sorted(set(coefficients), key=lambda x: x.count()))
def _analyze_domains(self):
"""Analyze which domains can be found in FormSum."""
from ufl.domain import join_domains
# Collect unique domains
self._domains = join_domains([component.ufl_domain() for component in self._components])
def __hash__(self):
"""Hash."""
if self._hash is None:
self._hash = hash(tuple(hash(component) for component in self.components()))
return self._hash
[docs] def equals(self, other):
"""Evaluate ``bool(lhs_form == rhs_form)``."""
if type(other) is not FormSum:
return False
if self is other:
return True
return len(self.components()) == len(other.components()) and all(
a == b for a, b in zip(self.components(), other.components())
)
def __str__(self):
"""Compute shorter string representation of form. This can be huge for complicated forms."""
# Warning used for making sure we don't use this in the general pipeline:
# warning("Calling str on form is potentially expensive and
# should be avoided except during debugging.")
# Not caching this because it can be huge
s = "\n + ".join(str(component) for component in self.components())
return s or "<empty FormSum>"
def __repr__(self):
"""Compute repr string of form. This can be huge for complicated forms."""
# Warning used for making sure we don't use this in the general pipeline:
# warning("Calling repr on form is potentially expensive and
# should be avoided except during debugging.")
# Not caching this because it can be huge
itgs = ", ".join(repr(component) for component in self.components())
r = "FormSum([" + itgs + "])"
return r
[docs]@ufl_type()
class ZeroBaseForm(BaseForm):
"""Description of a zero base form.
ZeroBaseForm is idempotent with respect to assembly and is mostly
used for sake of simplifying base-form expressions.
"""
__slots__ = (
"_arguments",
"_coefficients",
"ufl_operands",
"_hash",
# Pyadjoint compatibility
"form",
)
def __init__(self, arguments):
"""Initialise."""
BaseForm.__init__(self)
self._arguments = arguments
self.ufl_operands = arguments
self._hash = None
self.form = None
def _analyze_form_arguments(self):
"""Analyze form arguments."""
# `self._arguments` is already set in `BaseForm.__init__`
self._coefficients = ()
def __ne__(self, other):
"""Overwrite BaseForm.__neq__ which relies on `equals`."""
return not self == other
def __eq__(self, other):
"""Check equality."""
if type(other) is ZeroBaseForm:
if self is other:
return True
return self._arguments == other._arguments
elif isinstance(other, (int, float)):
return other == 0
else:
return False
def __str__(self):
"""Format as a string."""
return "ZeroBaseForm(%s)" % (", ".join(str(arg) for arg in self._arguments))
def __repr__(self):
"""Representation."""
return "ZeroBaseForm(%s)" % (", ".join(repr(arg) for arg in self._arguments))
def __hash__(self):
"""Hash."""
if self._hash is None:
self._hash = hash(("ZeroBaseForm", hash(self._arguments)))
return self._hash