# -*- coding: utf-8 -*-
"""This module provides an extensive list of predefined finite element
families. Users or, more likely, form compilers, may register new
elements by calling the function register_element."""
# Copyright (C) 2008-2016 Martin Sandve Alnæs and Anders Logg
#
# This file is part of UFL (https://www.fenicsproject.org)
#
# SPDX-License-Identifier: LGPL-3.0-or-later
#
# Modified by Marie E. Rognes <meg@simula.no>, 2010
# Modified by Lizao Li <lzlarryli@gmail.com>, 2015, 2016
# Modified by Massimiliano Leoni, 2016
from numpy import asarray
from ufl.log import warning, error
from ufl.sobolevspace import L2, H1, H2, HDiv, HCurl, HEin, HDivDiv
from ufl.utils.formatting import istr
from ufl.cell import Cell, TensorProductCell
# List of valid elements
ufl_elements = {}
# Aliases: aliases[name] (...) -> (standard_name, ...)
aliases = {}
# Function for registering new elements
[docs]def register_element(family, short_name, value_rank, sobolev_space, mapping,
degree_range, cellnames):
"Register new finite element family."
if family in ufl_elements:
error('Finite element \"%s\" has already been registered.' % family)
ufl_elements[family] = (family, short_name, value_rank, sobolev_space,
mapping, degree_range, cellnames)
ufl_elements[short_name] = (family, short_name, value_rank, sobolev_space,
mapping, degree_range, cellnames)
[docs]def register_element2(family, value_rank, sobolev_space, mapping,
degree_range, cellnames):
"Register new finite element family."
if family in ufl_elements:
error('Finite element \"%s\" has already been registered.' % family)
ufl_elements[family] = (family, family, value_rank, sobolev_space,
mapping, degree_range, cellnames)
[docs]def register_alias(alias, to):
aliases[alias] = to
[docs]def show_elements():
"Shows all registered elements."
print("Showing all registered elements:")
print("================================")
shown = set()
for k in sorted(ufl_elements.keys()):
data = ufl_elements[k]
if data in shown:
continue
shown.add(data)
(family, short_name, value_rank, sobolev_space, mapping, degree_range, cellnames) = data
print("Finite element family: '%s', '%s'" % (family, short_name))
print("Sobolev space: %s" % (sobolev_space,))
print("Mapping: %s" % (mapping,))
print("Degree range: %s" % (degree_range,))
print("Value rank: %s" % (value_rank,))
print("Defined on cellnames: %s" % (cellnames,))
print()
# FIXME: Consider cleanup of element names. Use notation from periodic
# table as the main, keep old names as compatibility aliases.
# NOTE: Any element with polynomial degree 0 will be considered L2,
# independent of the space passed to register_element.
# NOTE: The mapping of the element basis functions
# from reference to physical representation is
# chosen based on the sobolev space:
# HDiv = contravariant Piola,
# HCurl = covariant Piola,
# H1/L2 = no mapping.
# TODO: If determining mapping from sobolev_space isn't sufficient in
# the future, add mapping name as another element property.
# Cell groups
simplices = ("interval", "triangle", "tetrahedron")
cubes = ("interval", "quadrilateral", "hexahedron")
any_cell = (None,
"vertex", "interval",
"triangle", "tetrahedron", "prism",
"pyramid", "quadrilateral", "hexahedron")
# Elements in the periodic table # TODO: Register these as aliases of
# periodic table element description instead of the other way around
register_element("Lagrange", "CG", 0, H1, "identity", (1, None),
any_cell) # "P"
register_element("Brezzi-Douglas-Marini", "BDM", 1, HDiv,
"contravariant Piola", (1, None), simplices[1:]) # "BDMF" (2d), "N2F" (3d)
register_element("Discontinuous Lagrange", "DG", 0, L2, "identity", (0, None),
any_cell) # "DP"
register_element("Discontinuous Taylor", "TDG", 0, L2, "identity", (0, None), simplices)
register_element("Nedelec 1st kind H(curl)", "N1curl", 1, HCurl,
"covariant Piola", (1, None), simplices[1:]) # "RTE" (2d), "N1E" (3d)
register_element("Nedelec 2nd kind H(curl)", "N2curl", 1, HCurl,
"covariant Piola", (1, None), simplices[1:]) # "BDME" (2d), "N2E" (3d)
register_element("Raviart-Thomas", "RT", 1, HDiv, "contravariant Piola",
(1, None), simplices[1:]) # "RTF" (2d), "N1F" (3d)
# Elements not in the periodic table
register_element("Argyris", "ARG", 0, H2, "identity", (5, 5), ("triangle",))
register_element("Bell", "BELL", 0, H2, "identity", (5, 5), ("triangle",))
register_element("Brezzi-Douglas-Fortin-Marini", "BDFM", 1, HDiv,
"contravariant Piola", (1, None), simplices[1:])
register_element("Crouzeix-Raviart", "CR", 0, L2, "identity", (1, 1),
simplices[1:])
# TODO: Implement generic Tear operator for elements instead of this:
register_element("Discontinuous Raviart-Thomas", "DRT", 1, L2,
"contravariant Piola", (1, None), simplices[1:])
register_element("Hermite", "HER", 0, H1, "identity", (3, 3), simplices)
register_element("Kong-Mulder-Veldhuizen", "KMV", 0, H1, "identity", (1, None),
simplices[1:])
register_element("Mardal-Tai-Winther", "MTW", 1, H1, "contravariant Piola", (3, 3),
("triangle",))
register_element("Morley", "MOR", 0, H2, "identity", (2, 2), ("triangle",))
# Special elements
register_element("Boundary Quadrature", "BQ", 0, L2, "identity", (0, None),
any_cell)
register_element("Bubble", "B", 0, H1, "identity", (2, None), simplices)
register_element("FacetBubble", "FB", 0, H1, "identity", (2, None), simplices)
register_element("Quadrature", "Quadrature", 0, L2, "identity", (0, None),
any_cell)
register_element("Real", "R", 0, L2, "identity", (0, 0),
any_cell + ("TensorProductCell",))
register_element("Undefined", "U", 0, L2, "identity", (0, None), any_cell)
register_element("Radau", "Rad", 0, L2, "identity", (0, None), ("interval",))
register_element("Regge", "Regge", 2, HEin, "double covariant Piola",
(0, None), simplices[1:])
register_element("HDiv Trace", "HDivT", 0, L2, "identity", (0, None), any_cell)
register_element("Hellan-Herrmann-Johnson", "HHJ", 2, HDivDiv,
"double contravariant Piola", (0, None), ("triangle",))
register_element("Nonconforming Arnold-Winther", "AWnc", 2, HDivDiv,
"double contravariant Piola", (2, 2), ("triangle", "tetrahedron"))
register_element("Conforming Arnold-Winther", "AWc", 2, HDivDiv,
"double contravariant Piola", (3, None), ("triangle", "tetrahedron"))
# Spectral elements.
register_element("Gauss-Legendre", "GL", 0, L2, "identity", (0, None),
("interval",))
register_element("Gauss-Lobatto-Legendre", "GLL", 0, H1, "identity", (1, None),
("interval",))
register_alias("Lobatto",
lambda family, dim, order, degree: ("Gauss-Lobatto-Legendre", order))
register_alias("Lob",
lambda family, dim, order, degree: ("Gauss-Lobatto-Legendre", order))
register_element2("Bernstein", 0, H1, "identity", (1, None), simplices)
# Let Nedelec H(div) elements be aliases to BDMs/RTs
register_alias("Nedelec 1st kind H(div)",
lambda family, dim, order, degree: ("Raviart-Thomas", order))
register_alias("N1div",
lambda family, dim, order, degree: ("Raviart-Thomas", order))
register_alias("Nedelec 2nd kind H(div)",
lambda family, dim, order, degree: ("Brezzi-Douglas-Marini",
order))
register_alias("N2div",
lambda family, dim, order, degree: ("Brezzi-Douglas-Marini",
order))
# Let Discontinuous Lagrange Trace element be alias to HDiv Trace
register_alias("Discontinuous Lagrange Trace",
lambda family, dim, order, degree: ("HDiv Trace", order))
register_alias("DGT",
lambda family, dim, order, degree: ("HDiv Trace", order))
# New elements introduced for the periodic table 2014
register_element2("Q", 0, H1, "identity", (1, None), cubes)
register_element2("DQ", 0, L2, "identity", (0, None), cubes)
register_element2("RTCE", 1, HCurl, "covariant Piola", (1, None),
("quadrilateral",))
register_element2("RTCF", 1, HDiv, "contravariant Piola", (1, None),
("quadrilateral",))
register_element2("NCE", 1, HCurl, "covariant Piola", (1, None),
("hexahedron",))
register_element2("NCF", 1, HDiv, "contravariant Piola", (1, None),
("hexahedron",))
register_element2("S", 0, H1, "identity", (1, None), cubes)
register_element2("DPC", 0, L2, "identity", (0, None), cubes)
register_element2("BDMCE", 1, HCurl, "covariant Piola", (1, None),
("quadrilateral",))
register_element2("BDMCF", 1, HDiv, "contravariant Piola", (1, None),
("quadrilateral",))
register_element2("AAE", 1, HCurl, "covariant Piola", (1, None),
("hexahedron",))
register_element2("AAF", 1, HDiv, "contravariant Piola", (1, None),
("hexahedron",))
# New aliases introduced for the periodic table 2014
register_alias("P", lambda family, dim, order, degree: ("Lagrange", order))
register_alias("DP", lambda family, dim, order,
degree: ("Discontinuous Lagrange", order))
register_alias("RTE", lambda family, dim, order,
degree: ("Nedelec 1st kind H(curl)", order))
register_alias("RTF", lambda family, dim, order,
degree: ("Raviart-Thomas", order))
register_alias("N1E", lambda family, dim, order,
degree: ("Nedelec 1st kind H(curl)", order))
register_alias("N1F", lambda family, dim, order, degree: ("Raviart-Thomas",
order))
register_alias("BDME", lambda family, dim, order,
degree: ("Nedelec 2nd kind H(curl)", order))
register_alias("BDMF", lambda family, dim, order,
degree: ("Brezzi-Douglas-Marini", order))
register_alias("N2E", lambda family, dim, order,
degree: ("Nedelec 2nd kind H(curl)", order))
register_alias("N2F", lambda family, dim, order,
degree: ("Brezzi-Douglas-Marini", order))
# discontinuous elements using l2 pullbacks
register_element2("DPC L2", 0, L2, "L2 Piola", (1, None), cubes)
register_element2("DQ L2", 0, L2, "L2 Piola", (0, None), cubes)
register_element("Gauss-Legendre L2", "GL L2", 0, L2, "L2 Piola", (0, None),
("interval",))
register_element("Discontinuous Lagrange L2", "DG L2", 0, L2, "L2 Piola", (0, None),
any_cell) # "DP"
register_alias("DP L2", lambda family, dim, order,
degree: ("Discontinuous Lagrange L2", order))
register_alias("P- Lambda L2", lambda family, dim, order,
degree: feec_element_l2(family, dim, order, degree))
register_alias("P Lambda L2", lambda family, dim, order,
degree: feec_element_l2(family, dim, order, degree))
register_alias("Q- Lambda L2", lambda family, dim, order,
degree: feec_element_l2(family, dim, order, degree))
register_alias("S Lambda L2", lambda family, dim, order,
degree: feec_element_l2(family, dim, order, degree))
register_alias("P- L2", lambda family, dim, order,
degree: feec_element_l2(family, dim, order, degree))
register_alias("Q- L2", lambda family, dim, order,
degree: feec_element_l2(family, dim, order, degree))
# mimetic spectral elements - primal and dual complexs
register_element("Extended-Gauss-Legendre", "EGL", 0, H1, "identity", (2, None),
("interval",))
register_element("Extended-Gauss-Legendre Edge", "EGL-Edge", 0, L2, "identity", (1, None),
("interval",))
register_element("Extended-Gauss-Legendre Edge L2", "EGL-Edge L2", 0, L2, "L2 Piola", (1, None),
("interval",))
register_element("Gauss-Lobatto-Legendre Edge", "GLL-Edge", 0, L2, "identity", (0, None),
("interval",))
register_element("Gauss-Lobatto-Legendre Edge L2", "GLL-Edge L2", 0, L2, "L2 Piola", (0, None),
("interval",))
# directly-defined serendipity elements ala Arbogast
# currently the theory is only really worked out for quads.
register_element("Direct Serendipity", "Sdirect", 0, H1, "physical", (1, None),
("quadrilateral",))
register_element("Direct Serendipity Full H(div)", "Sdirect H(div)", 1, HDiv, "physical", (1, None),
("quadrilateral",))
register_element("Direct Serendipity Reduced H(div)", "Sdirect H(div) red", 1, HDiv, "physical", (1, None),
("quadrilateral",))
# NOTE- the edge elements for primal mimetic spectral elements are accessed by using variant='mse' in the appropriate places
[docs]def feec_element(family, n, r, k):
"""Finite element exterior calculus notation
n = topological dimension of domain
r = polynomial order
k = form_degree"""
# Note: We always map to edge elements in 2D, don't know how to
# differentiate otherwise?
# Mapping from (feec name, domain dimension, form degree) to
# (family name, polynomial order)
_feec_elements = {
"P- Lambda": (
(("P", r), ("DP", r - 1)),
(("P", r), ("RTE", r), ("DP", r - 1)),
(("P", r), ("N1E", r), ("N1F", r), ("DP", r - 1)),
),
"P Lambda": (
(("P", r), ("DP", r)),
(("P", r), ("BDME", r), ("DP", r)),
(("P", r), ("N2E", r), ("N2F", r), ("DP", r)),
),
"Q- Lambda": (
(("Q", r), ("DQ", r - 1)),
(("Q", r), ("RTCE", r), ("DQ", r - 1)),
(("Q", r), ("NCE", r), ("NCF", r), ("DQ", r - 1)),
),
"S Lambda": (
(("S", r), ("DPC", r)),
(("S", r), ("BDMCE", r), ("DPC", r)),
(("S", r), ("AAE", r), ("AAF", r), ("DPC", r)),
),
}
# New notation, old verbose notation (including "Lambda") might be
# removed
_feec_elements["P-"] = _feec_elements["P- Lambda"]
_feec_elements["P"] = _feec_elements["P Lambda"]
_feec_elements["Q-"] = _feec_elements["Q- Lambda"]
_feec_elements["S"] = _feec_elements["S Lambda"]
family, r = _feec_elements[family][n - 1][k]
return family, r
[docs]def feec_element_l2(family, n, r, k):
"""Finite element exterior calculus notation
n = topological dimension of domain
r = polynomial order
k = form_degree"""
# Note: We always map to edge elements in 2D, don't know how to
# differentiate otherwise?
# Mapping from (feec name, domain dimension, form degree) to
# (family name, polynomial order)
_feec_elements = {
"P- Lambda L2": (
(("P", r), ("DP L2", r - 1)),
(("P", r), ("RTE", r), ("DP L2", r - 1)),
(("P", r), ("N1E", r), ("N1F", r), ("DP L2", r - 1)),
),
"P Lambda L2": (
(("P", r), ("DP L2", r)),
(("P", r), ("BDME", r), ("DP L2", r)),
(("P", r), ("N2E", r), ("N2F", r), ("DP L2", r)),
),
"Q- Lambda L2": (
(("Q", r), ("DQ L2", r - 1)),
(("Q", r), ("RTCE", r), ("DQ L2", r - 1)),
(("Q", r), ("NCE", r), ("NCF", r), ("DQ L2", r - 1)),
),
"S Lambda L2": (
(("S", r), ("DPC L2", r)),
(("S", r), ("BDMCE", r), ("DPC L2", r)),
(("S", r), ("AAE", r), ("AAF", r), ("DPC L2", r)),
),
}
# New notation, old verbose notation (including "Lambda") might be
# removed
_feec_elements["P- L2"] = _feec_elements["P- Lambda L2"]
_feec_elements["P L2"] = _feec_elements["P Lambda L2"]
_feec_elements["Q- L2"] = _feec_elements["Q- Lambda L2"]
_feec_elements["S L2"] = _feec_elements["S Lambda L2"]
family, r = _feec_elements[family][n - 1][k]
return family, r
# General FEEC notation, old verbose (can be removed)
register_alias("P- Lambda", lambda family, dim, order,
degree: feec_element(family, dim, order, degree))
register_alias("P Lambda", lambda family, dim, order,
degree: feec_element(family, dim, order, degree))
register_alias("Q- Lambda", lambda family, dim, order,
degree: feec_element(family, dim, order, degree))
register_alias("S Lambda", lambda family, dim, order,
degree: feec_element(family, dim, order, degree))
# General FEEC notation, new compact notation
register_alias("P-", lambda family, dim, order,
degree: feec_element(family, dim, order, degree))
register_alias("Q-", lambda family, dim, order,
degree: feec_element(family, dim, order, degree))
[docs]def canonical_element_description(family, cell, order, form_degree):
"""Given basic element information, return corresponding element information on canonical form.
Input: family, cell, (polynomial) order, form_degree
Output: family (canonical), short_name (for printing), order, value shape,
reference value shape, sobolev_space.
This is used by the FiniteElement constructor to ved input
data against the element list and aliases defined in ufl.
"""
# Get domain dimensions
if cell is not None:
tdim = cell.topological_dimension()
gdim = cell.geometric_dimension()
if isinstance(cell, Cell):
cellname = cell.cellname()
else:
cellname = None
else:
tdim = None
gdim = None
cellname = None
# Catch general FEEC notation "P" and "S"
if form_degree is not None and family in ("P", "S"):
family, order = feec_element(family, tdim, order, form_degree)
if form_degree is not None and family in ("P L2", "S L2"):
family, order = feec_element_l2(family, tdim, order, form_degree)
# Check whether this family is an alias for something else
while family in aliases:
if tdim is None:
error("Need dimension to handle element aliases.")
(family, order) = aliases[family](family, tdim, order, form_degree)
# Check that the element family exists
if family not in ufl_elements:
error('Unknown finite element "%s".' % family)
# Check that element data is valid (and also get common family
# name)
(family, short_name, value_rank, sobolev_space, mapping, krange, cellnames) = ufl_elements[family]
# Accept CG/DG on all kind of cells, but use Q/DQ on "product" cells
if cellname in set(cubes) - set(simplices) or isinstance(cell, TensorProductCell):
if family == "Lagrange":
family = "Q"
elif family == "Discontinuous Lagrange":
if order >= 1:
warning("Discontinuous Lagrange element requested on %s, creating DQ element." % cell.cellname())
family = "DQ"
elif family == "Discontinuous Lagrange L2":
if order >= 1:
warning("Discontinuous Lagrange L2 element requested on %s, creating DQ L2 element." % cell.cellname())
family = "DQ L2"
# Validate cellname if a valid cell is specified
if not (cellname is None or cellname in cellnames):
error('Cellname "%s" invalid for "%s" finite element.' % (cellname, family))
# Validate order if specified
if order is not None:
if krange is None:
error('Order "%s" invalid for "%s" finite element, '
'should be None.' % (order, family))
kmin, kmax = krange
if not (kmin is None or (asarray(order) >= kmin).all()):
error('Order "%s" invalid for "%s" finite element.' %
(order, family))
if not (kmax is None or (asarray(order) <= kmax).all()):
error('Order "%s" invalid for "%s" finite element.' %
(istr(order), family))
# Override sobolev_space for piecewise constants (TODO: necessary?)
if order == 0:
sobolev_space = L2
if value_rank == 2:
# Tensor valued fundamental elements in HEin have this shape
if gdim is None or tdim is None:
error("Cannot infer shape of element without topological and geometric dimensions.")
reference_value_shape = (tdim, tdim)
value_shape = (gdim, gdim)
elif value_rank == 1:
# Vector valued fundamental elements in HDiv and HCurl have a shape
if gdim is None or tdim is None:
error("Cannot infer shape of element without topological and geometric dimensions.")
reference_value_shape = (tdim,)
value_shape = (gdim,)
elif value_rank == 0:
# All other elements are scalar values
reference_value_shape = ()
value_shape = ()
else:
error("Invalid value rank %d." % value_rank)
return family, short_name, order, value_shape, reference_value_shape, sobolev_space, mapping