Source code for ufl.algorithms.coordinate_derivative_helpers
# -*- coding: utf-8 -*-
"""This module provides the necessary tools to strip away and then reattach the
coordinate derivatives at the right time point in compute_form_data."""
# Copyright (C) 2018 Florian Wechsung
#
# This file is part of UFL (https://www.fenicsproject.org)
#
# SPDX-License-Identifier: LGPL-3.0-or-later
from ufl.log import error
from ufl.differentiation import CoordinateDerivative
from ufl.algorithms.multifunction import MultiFunction
from ufl.corealg.map_dag import map_expr_dags
from ufl.classes import Integral
[docs]class CoordinateDerivativeIsOutermostChecker(MultiFunction):
""" Traverses the tree to make sure that CoordinateDerivatives are only on
the outside. The visitor returns False as long as no CoordinateDerivative
has been seen. """
[docs] def multi_index(self, o):
return False
[docs] def terminal(self, o):
return False
[docs] def expr(self, o, *operands):
""" If we have already seen a CoordinateDerivative, then no other
expressions apart from more CoordinateDerivatives are allowed to wrap
around it. """
if any(operands):
error("CoordinateDerivative(s) must be outermost")
return False
[docs] def coordinate_derivative(self, o, expr, *_):
return True
[docs]def strip_coordinate_derivatives(integrals):
if isinstance(integrals, list):
if len(integrals) == 0:
return integrals, None
stripped_integrals_and_cds = []
for integral in integrals:
(si, cd) = strip_coordinate_derivatives(integral)
stripped_integrals_and_cds.append((si, cd))
return stripped_integrals_and_cds
elif isinstance(integrals, Integral):
integral = integrals
integrand = integral.integrand()
checker = CoordinateDerivativeIsOutermostChecker()
map_expr_dags(checker, [integrand])
coordinate_derivatives = []
# grab all coordinate derivatives and store them, so that we can apply
# them later again
def take_top_coordinate_derivatives(o):
o_ = o.ufl_operands
if isinstance(o, CoordinateDerivative):
coordinate_derivatives.append((o_[1], o_[2], o_[3]))
return take_top_coordinate_derivatives(o_[0])
else:
return o
newintegrand = take_top_coordinate_derivatives(integrand)
return (integral.reconstruct(integrand=newintegrand), coordinate_derivatives)
else:
error("Invalid type %s" % (integrals.__class__.__name__,))
[docs]def attach_coordinate_derivatives(integral, coordinate_derivatives):
if coordinate_derivatives is None:
return integral
if isinstance(integral, Integral):
integrand = integral.integrand()
# apply the stored coordinate derivatives back onto the integrand
for tup in reversed(coordinate_derivatives):
integrand = CoordinateDerivative(integrand, tup[0], tup[1], tup[2])
return integral.reconstruct(integrand=integrand)
else:
error("Invalid type %s" % (integral.__class__.__name__,))