Source code for ufl.algorithms.apply_integral_scaling

# -*- coding: utf-8 -*-
"""Algorithm for replacing gradients in an expression with reference gradients and coordinate mappings."""

# Copyright (C) 2013-2016 Martin Sandve Alnæs
#
# This file is part of UFL (https://www.fenicsproject.org)
#
# SPDX-License-Identifier:    LGPL-3.0-or-later

from ufl.log import error
from ufl.classes import JacobianDeterminant, FacetJacobianDeterminant, QuadratureWeight, Form, Integral
from ufl.measure import custom_integral_types, point_integral_types
from ufl.differentiation import CoordinateDerivative
from ufl.algorithms.apply_geometry_lowering import apply_geometry_lowering
from ufl.algorithms.estimate_degrees import estimate_total_polynomial_degree


[docs]def compute_integrand_scaling_factor(integral): """Change integrand geometry to the right representations.""" domain = integral.ufl_domain() integral_type = integral.integral_type() # co = CellOrientation(domain) weight = QuadratureWeight(domain) tdim = domain.topological_dimension() # gdim = domain.geometric_dimension() # Polynomial degree of integrand scaling degree = 0 if integral_type == "cell": if tdim > 0: detJ = JacobianDeterminant(domain) degree = estimate_total_polynomial_degree(apply_geometry_lowering(detJ)) # Despite the abs, |detJ| is polynomial except for # self-intersecting cells, where we have other problems. scale = abs(detJ) * weight else: # No need to scale 'integral' over a vertex scale = 1 elif integral_type.startswith("exterior_facet"): if tdim > 1: # Scaling integral by facet jacobian determinant and # quadrature weight detFJ = FacetJacobianDeterminant(domain) degree = estimate_total_polynomial_degree(apply_geometry_lowering(detFJ)) scale = detFJ * weight else: # No need to scale 'integral' over a vertex scale = 1 elif integral_type.startswith("interior_facet"): if tdim > 1: # Scaling integral by facet jacobian determinant from one # side and quadrature weight detFJ = FacetJacobianDeterminant(domain) degree = estimate_total_polynomial_degree(apply_geometry_lowering(detFJ)) scale = detFJ('+') * weight else: # No need to scale 'integral' over a vertex scale = 1 elif integral_type in custom_integral_types: # Scaling with custom weight, which includes eventual volume # scaling scale = weight elif integral_type in point_integral_types: # No need to scale 'integral' over a point scale = 1 else: error("Unknown integral type {}, don't know how to scale.".format(integral_type)) return scale, degree
[docs]def apply_integral_scaling(form): "Multiply integrands by a factor to scale the integral to reference frame." # TODO: Consider adding an in_reference_frame property to Integral # and checking it here and setting it in the returned form if isinstance(form, Form): newintegrals = [apply_integral_scaling(integral) for integral in form.integrals()] return Form(newintegrals) elif isinstance(form, Integral): integral = form integrand = integral.integrand() # Compute and apply integration scaling factor since we want to compute # coordinate derivatives at the end, the scaling factor has to be moved # inside those scale, degree = compute_integrand_scaling_factor(integral) md = {} md.update(integral.metadata()) new_degree = degree cur_degree = md.get("estimated_polynomial_degree") if cur_degree is not None: if isinstance(cur_degree, tuple) and isinstance(degree, tuple): new_degree = tuple(d[0] + d[1] for d in zip(cur_degree, degree)) elif isinstance(cur_degree, tuple): new_degree = tuple(d + degree for d in cur_degree) elif isinstance(degree, tuple): new_degree = tuple(cur_degree + d for d in degree) else: new_degree = cur_degree + degree md["estimated_polynomial_degree"] = new_degree def scale_coordinate_derivative(o, scale): o_ = o.ufl_operands if isinstance(o, CoordinateDerivative): return CoordinateDerivative(scale_coordinate_derivative(o_[0], scale), o_[1], o_[2], o_[3]) else: return scale * o newintegrand = scale_coordinate_derivative(integrand, scale) return integral.reconstruct(integrand=newintegrand, metadata=md) else: error("Invalid type %s" % (form.__class__.__name__,))