ffcx.ir.representation

Compiler stage 2: Code representation.

Module computes intermediate representations of forms. For each UFC function, we extract the data needed for code generation at a later stage.

The representation should conform strictly to the naming and order of functions in UFC. Thus, for code generation of the function “foo”, one should only need to use the data stored in the intermediate representation under the key “foo”.

Functions

compute_ir(analysis, object_names, prefix, ...)

Compute intermediate representation.

Classes

CommonExpressionIR(integral_type, ...)

Common-ground for IntegralIR and ExpressionIR.

DataIR(integrals, forms, expressions)

Intermediate representation of data.

ExpressionIR(expression, ...)

Intermediate representation of a DOLFINx Expression.

FormIR(id, name, signature, rank, ...)

Intermediate representation of a form.

IntegralIR(expression, rank, ...)

Intermediate representation of an integral.

QuadratureIR(cell_shape, points, weights)

Intermediate representation of a quadrature rule.

class ffcx.ir.representation.CommonExpressionIR(integral_type: str, entity_type: str, tensor_shape: list[int], coefficient_numbering: dict[ufl.Coefficient, int], coefficient_offsets: dict[ufl.Coefficient, int], original_constant_offsets: dict[ufl.Constant, int], unique_tables: dict[str, npt.NDArray[np.float64]], unique_table_types: dict[str, str], integrand: dict[QuadratureRule, dict], name: str, needs_facet_permutations: bool, shape: list[int])[source]

Bases: NamedTuple

Common-ground for IntegralIR and ExpressionIR.

Create new instance of CommonExpressionIR(integral_type, entity_type, tensor_shape, coefficient_numbering, coefficient_offsets, original_constant_offsets, unique_tables, unique_table_types, integrand, name, needs_facet_permutations, shape)

coefficient_numbering: dict[Coefficient, int]

Alias for field number 3

coefficient_offsets: dict[Coefficient, int]

Alias for field number 4

entity_type: str

Alias for field number 1

integral_type: str

Alias for field number 0

integrand: dict[QuadratureRule, dict]

Alias for field number 8

name: str

Alias for field number 9

needs_facet_permutations: bool

Alias for field number 10

original_constant_offsets: dict[Constant, int]

Alias for field number 5

shape: list[int]

Alias for field number 11

tensor_shape: list[int]

Alias for field number 2

unique_table_types: dict[str, str]

Alias for field number 7

unique_tables: dict[str, ndarray[Any, dtype[float64]]]

Alias for field number 6

class ffcx.ir.representation.DataIR(integrals: list[IntegralIR], forms: list[FormIR], expressions: list[ExpressionIR])[source]

Bases: NamedTuple

Intermediate representation of data.

Create new instance of DataIR(integrals, forms, expressions)

expressions: list[ExpressionIR]

Alias for field number 2

forms: list[FormIR]

Alias for field number 1

integrals: list[IntegralIR]

Alias for field number 0

class ffcx.ir.representation.ExpressionIR(expression: CommonExpressionIR, original_coefficient_positions: list[int], coefficient_names: list[str], constant_names: list[str], name_from_uflfile: str)[source]

Bases: NamedTuple

Intermediate representation of a DOLFINx Expression.

Create new instance of ExpressionIR(expression, original_coefficient_positions, coefficient_names, constant_names, name_from_uflfile)

coefficient_names: list[str]

Alias for field number 2

constant_names: list[str]

Alias for field number 3

expression: CommonExpressionIR

Alias for field number 0

name_from_uflfile: str

Alias for field number 4

original_coefficient_positions: list[int]

Alias for field number 1

class ffcx.ir.representation.FormIR(id: int, name: str, signature: str, rank: int, num_coefficients: int, num_constants: int, name_from_uflfile: str, original_coefficient_positions: list[int], coefficient_names: list[str], constant_names: list[str], finite_element_hashes: list[int], integral_names: dict[str, list[str]], subdomain_ids: dict[str, list[int]])[source]

Bases: NamedTuple

Intermediate representation of a form.

Create new instance of FormIR(id, name, signature, rank, num_coefficients, num_constants, name_from_uflfile, original_coefficient_positions, coefficient_names, constant_names, finite_element_hashes, integral_names, subdomain_ids)

coefficient_names: list[str]

Alias for field number 8

constant_names: list[str]

Alias for field number 9

finite_element_hashes: list[int]

Alias for field number 10

id: int

Alias for field number 0

integral_names: dict[str, list[str]]

Alias for field number 11

name: str

Alias for field number 1

name_from_uflfile: str

Alias for field number 6

num_coefficients: int

Alias for field number 4

num_constants: int

Alias for field number 5

original_coefficient_positions: list[int]

Alias for field number 7

rank: int

Alias for field number 3

signature: str

Alias for field number 2

subdomain_ids: dict[str, list[int]]

Alias for field number 12

class ffcx.ir.representation.Integral(integrand, integral_type, domain, subdomain_id, metadata, subdomain_data)[source]

Bases: object

An integral over a single domain.

Initialise.

integral_type()[source]

Return the domain type of this integral.

integrand()[source]

Return the integrand expression, which is an Expr instance.

metadata()[source]

Return the compiler metadata this integral has been annotated with.

reconstruct(integrand=None, integral_type=None, domain=None, subdomain_id=None, metadata=None, subdomain_data=None)[source]

Construct a new Integral object with some properties replaced with new values.

Example

<a = Integral instance> b = a.reconstruct(expand_compounds(a.integrand())) c = a.reconstruct(metadata={‘quadrature_degree’:2})

subdomain_data()[source]

Return the domain data of this integral.

subdomain_id()[source]

Return the subdomain id of this integral.

ufl_domain()[source]

Return the integration domain of this integral.

class ffcx.ir.representation.IntegralIR(expression: CommonExpressionIR, rank: int, enabled_coefficients: list[bool], coordinate_element_hash: str)[source]

Bases: NamedTuple

Intermediate representation of an integral.

Create new instance of IntegralIR(expression, rank, enabled_coefficients, coordinate_element_hash)

coordinate_element_hash: str

Alias for field number 3

enabled_coefficients: list[bool]

Alias for field number 2

expression: CommonExpressionIR

Alias for field number 0

rank: int

Alias for field number 1

class ffcx.ir.representation.QuadratureIR(cell_shape: str, points: npt.NDArray[np.float64], weights: npt.NDArray[np.float64])[source]

Bases: NamedTuple

Intermediate representation of a quadrature rule.

Create new instance of QuadratureIR(cell_shape, points, weights)

cell_shape: str

Alias for field number 0

points: ndarray[Any, dtype[float64]]

Alias for field number 1

weights: ndarray[Any, dtype[float64]]

Alias for field number 2

class ffcx.ir.representation.QuadratureRule(points, weights, tensor_factors=None)[source]

Bases: object

A quadrature rule.

Initialise.

id()[source]

Return unique deterministic identifier.

Note

This identifier is used to provide unique names to tables and symbols in generated code.

class ffcx.ir.representation.UFLData(form_data: tuple[ufl.algorithms.formdata.FormData, ...], unique_elements: list[basix.ufl._ElementBase], element_numbers: dict[basix.ufl._ElementBase, int], unique_coordinate_elements: list[basix.ufl._ElementBase], expressions: list[tuple[ufl.core.expr.Expr, npt.NDArray[np.float64], ufl.core.expr.Expr]])[source]

Bases: NamedTuple

UFL data.

Create new instance of UFLData(form_data, unique_elements, element_numbers, unique_coordinate_elements, expressions)

element_numbers: dict[_ElementBase, int]

Alias for field number 2

expressions: list[tuple[Expr, ndarray[Any, dtype[float64]], Expr]]

Alias for field number 4

form_data: tuple[FormData, ...]

Alias for field number 0

unique_coordinate_elements: list[_ElementBase]

Alias for field number 3

unique_elements: list[_ElementBase]

Alias for field number 1

ffcx.ir.representation.compute_integral_ir(cell, integral_type, entity_type, integrands, argument_shape, p, visualise)[source]

Compute intermediate representation for an integral.

ffcx.ir.representation.compute_ir(analysis: UFLData, object_names: dict[int, str], prefix: str, options: dict[str, dtype[Any] | None | type[Any] | _SupportsDType[dtype[Any]] | str | tuple[Any, int] | tuple[Any, SupportsIndex | Sequence[SupportsIndex]] | list[Any] | _DTypeDict | tuple[Any, Any] | int | float], visualise: bool) DataIR[source]

Compute intermediate representation.

ffcx.ir.representation.create_quadrature_points_and_weights(integral_type, cell, degree, rule, elements, use_tensor_product=False)[source]

Create quadrature rule and return points and weights.

ffcx.ir.representation.sorted_expr_sum(seq)[source]

Sorted expr sum.