Source code for ffcx.ir.representation

# Copyright (C) 2009-2020 Anders Logg, Martin Sandve Alnæs, Marie E. Rognes,
# Kristian B. Oelgaard, Matthew W. Scroggs, Chris Richardson, and others
#
# This file is part of FFCx. (https://www.fenicsproject.org)
#
# SPDX-License-Identifier:    LGPL-3.0-or-later
"""Compiler stage 2: Code representation.

Module computes intermediate representations of forms. For each UFC
function, we extract the data needed for code generation at a later stage.

The representation should conform strictly to the naming and order of
functions in UFC. Thus, for code generation of the function "foo", one
should only need to use the data stored in the intermediate
representation under the key "foo".
"""

from __future__ import annotations

import itertools
import logging
import typing
import warnings

import numpy as np
import numpy.typing as npt
import ufl
from ufl.classes import Integral
from ufl.sorting import sorted_expr_sum

from ffcx import naming
from ffcx.analysis import UFLData
from ffcx.ir.integral import compute_integral_ir
from ffcx.ir.representationutils import QuadratureRule, create_quadrature_points_and_weights

logger = logging.getLogger("ffcx")


[docs] class FormIR(typing.NamedTuple): """Intermediate representation of a form.""" id: int name: str signature: str rank: int num_coefficients: int num_constants: int name_from_uflfile: str original_coefficient_positions: list[int] coefficient_names: list[str] constant_names: list[str] finite_element_hashes: list[int] integral_names: dict[str, list[str]] subdomain_ids: dict[str, list[int]]
[docs] class QuadratureIR(typing.NamedTuple): """Intermediate representation of a quadrature rule.""" cell_shape: str points: npt.NDArray[np.float64] weights: npt.NDArray[np.float64]
[docs] class CommonExpressionIR(typing.NamedTuple): """Common-ground for IntegralIR and ExpressionIR.""" integral_type: str entity_type: str tensor_shape: list[int] coefficient_numbering: dict[ufl.Coefficient, int] coefficient_offsets: dict[ufl.Coefficient, int] original_constant_offsets: dict[ufl.Constant, int] unique_tables: dict[str, npt.NDArray[np.float64]] unique_table_types: dict[str, str] integrand: dict[QuadratureRule, dict] name: str needs_facet_permutations: bool shape: list[int]
[docs] class IntegralIR(typing.NamedTuple): """Intermediate representation of an integral.""" expression: CommonExpressionIR rank: int enabled_coefficients: list[bool] coordinate_element_hash: str
[docs] class ExpressionIR(typing.NamedTuple): """Intermediate representation of a DOLFINx Expression.""" expression: CommonExpressionIR original_coefficient_positions: list[int] coefficient_names: list[str] constant_names: list[str] name_from_uflfile: str
[docs] class DataIR(typing.NamedTuple): """Intermediate representation of data.""" integrals: list[IntegralIR] forms: list[FormIR] expressions: list[ExpressionIR]
[docs] def compute_ir( analysis: UFLData, object_names: dict[int, str], prefix: str, options: dict[str, npt.DTypeLike | int | float], visualise: bool, ) -> DataIR: """Compute intermediate representation.""" logger.info(79 * "*") logger.info("Compiler stage 2: Computing intermediate representation of objects") logger.info(79 * "*") # Compute object names # NOTE: This is done here for performance reasons, because repeated calls # within each IR computation would be expensive due to UFL signature computations finite_element_hashes = {e: e.basix_hash() for e in analysis.unique_elements} integral_names = {} form_names = {} for fd_index, fd in enumerate(analysis.form_data): form_names[fd_index] = naming.form_name(fd.original_form, fd_index, prefix) for itg_index, itg_data in enumerate(fd.integral_data): integral_names[(fd_index, itg_index)] = naming.integral_name( fd.original_form, itg_data.integral_type, fd_index, itg_data.subdomain_id, prefix ) irs = [ _compute_integral_ir( fd, i, analysis.element_numbers, integral_names, finite_element_hashes, options, visualise, ) for (i, fd) in enumerate(analysis.form_data) ] ir_integrals = list(itertools.chain(*irs)) ir_forms = [ _compute_form_ir( fd, i, prefix, form_names, integral_names, analysis.element_numbers, finite_element_hashes, object_names, ) for (i, fd) in enumerate(analysis.form_data) ] ir_expressions = [ _compute_expression_ir( expr, i, prefix, analysis, options, visualise, object_names, finite_element_hashes, ) for i, expr in enumerate(analysis.expressions) ] return DataIR( integrals=ir_integrals, forms=ir_forms, expressions=ir_expressions, )
def _compute_integral_ir( form_data, form_index, element_numbers, integral_names, finite_element_hashes, options, visualise, ) -> list[IntegralIR]: """Compute intermediate representation for form integrals.""" _entity_types = { "cell": "cell", "exterior_facet": "facet", "interior_facet": "facet", "vertex": "vertex", "custom": "cell", } # Iterate over groups of integrals irs = [] for itg_data_index, itg_data in enumerate(form_data.integral_data): logger.info(f"Computing IR for integral in integral group {itg_data_index}") expression_ir = {} # Compute representation entity_type = _entity_types[itg_data.integral_type] cell = itg_data.domain.ufl_cell() cellname = cell.cellname() tdim = cell.topological_dimension() assert all(tdim == itg.ufl_domain().topological_dimension() for itg in itg_data.integrals) expression_ir = { "integral_type": itg_data.integral_type, "entity_type": entity_type, "shape": (), } ir = { "rank": form_data.rank, "enabled_coefficients": itg_data.enabled_coefficients, "coordinate_element_hash": finite_element_hashes[ itg_data.domain.ufl_coordinate_element() ], } # Get element space dimensions unique_elements = element_numbers.keys() element_dimensions = { element: element.dim + element.num_global_support_dofs for element in unique_elements } # Create dimensions of primary indices, needed to reset the argument # 'A' given to tabulate_tensor() by the assembler. argument_dimensions = [ element_dimensions[element] for element in form_data.argument_elements ] # Compute shape of element tensor if expression_ir["integral_type"] == "interior_facet": expression_ir["tensor_shape"] = [2 * dim for dim in argument_dimensions] else: expression_ir["tensor_shape"] = argument_dimensions integral_type = itg_data.integral_type cell = itg_data.domain.ufl_cell() # Group integrands with the same quadrature rule grouped_integrands: dict[QuadratureRule, list[ufl.core.expr.Expr]] = {} use_sum_factorization = options["sum_factorization"] and itg_data.integral_type == "cell" for integral in itg_data.integrals: md = integral.metadata() or {} scheme = md["quadrature_rule"] tensor_factors = None if scheme == "custom": points = md["quadrature_points"] weights = md["quadrature_weights"] elif scheme == "vertex": # FIXME: Could this come from basix? # The vertex scheme, i.e., averaging the function value in the # vertices and multiplying with the simplex volume, is only of # order 1 and inferior to other generic schemes in terms of # error reduction. Equation systems generated with the vertex # scheme have some properties that other schemes lack, e.g., the # mass matrix is a simple diagonal matrix. This may be # prescribed in certain cases. degree = md["quadrature_degree"] if integral_type != "cell": facet_types = cell.facet_types() assert len(facet_types) == 1 cellname = facet_types[0].cellname() if degree > 1: warnings.warn( "Explicitly selected vertex quadrature (degree 1), " f"but requested degree is {degree}." ) if cellname == "tetrahedron": points, weights = ( np.array( [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]] ), np.array([1.0 / 24.0, 1.0 / 24.0, 1.0 / 24.0, 1.0 / 24.0]), ) elif cellname == "triangle": points, weights = ( np.array([[0.0, 0.0], [1.0, 0.0], [0.0, 1.0]]), np.array([1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0]), ) elif cellname == "interval": # Trapezoidal rule points, weights = (np.array([[0.0], [1.0]]), np.array([1.0 / 2.0, 1.0 / 2.0])) elif cellname == "quadrilateral": points, weights = ( np.array([[0.0, 0], [1.0, 0.0], [0.0, 1.0], [1.0, 1]]), np.array([1.0 / 4.0, 1.0 / 4.0, 1.0 / 4.0, 1.0 / 4.0]), ) elif cellname == "hexahedron": points, weights = ( np.array( [ [0.0, 0.0, 0.0], [1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [1.0, 1.0, 0.0], [0.0, 0.0, 1.0], [1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [1.0, 1.0, 1.0], ] ), np.array( [ 1.0 / 8.0, 1.0 / 8.0, 1.0 / 8.0, 1.0 / 8.0, 1.0 / 8.0, 1.0 / 8.0, 1.0 / 8.0, 1.0 / 8.0, ] ), ) else: raise RuntimeError(f"Vertex scheme is not supported for cell: {cellname}") else: degree = md["quadrature_degree"] points, weights, tensor_factors = create_quadrature_points_and_weights( integral_type, cell, degree, scheme, form_data.argument_elements, use_sum_factorization, ) points = np.asarray(points) weights = np.asarray(weights) rule = QuadratureRule(points, weights, tensor_factors) if rule not in grouped_integrands: grouped_integrands[rule] = [] grouped_integrands[rule].append(integral.integrand()) sorted_integrals: dict[QuadratureRule, Integral] = {} for rule, integrands in grouped_integrands.items(): integrands_summed = sorted_expr_sum(integrands) integral_new = Integral( integrands_summed, itg_data.integral_type, itg_data.domain, itg_data.subdomain_id, {}, None, ) sorted_integrals[rule] = integral_new # TODO: See if coefficient_numbering can be removed # Build coefficient numbering for UFC interface here, to avoid # renumbering in UFL and application of replace mapping coefficient_numbering = {} for i, f in enumerate(form_data.reduced_coefficients): coefficient_numbering[f] = i # Add coefficient numbering to IR expression_ir["coefficient_numbering"] = coefficient_numbering index_to_coeff = sorted([(v, k) for k, v in coefficient_numbering.items()]) offsets = {} width = 2 if integral_type in ("interior_facet") else 1 _offset = 0 for k, el in zip(index_to_coeff, form_data.coefficient_elements): offsets[k[1]] = _offset _offset += width * element_dimensions[el] # Copy offsets also into IR expression_ir["coefficient_offsets"] = offsets # Build offsets for Constants original_constant_offsets = {} _offset = 0 for constant in form_data.original_form.constants(): original_constant_offsets[constant] = _offset _offset += np.prod(constant.ufl_shape, dtype=int) expression_ir["original_constant_offsets"] = original_constant_offsets # Create map from number of quadrature points -> integrand integrand_map: dict[QuadratureRule, ufl.core.expr.Expr] = { rule: integral.integrand() for rule, integral in sorted_integrals.items() } # Build more specific intermediate representation integral_ir = compute_integral_ir( itg_data.domain.ufl_cell(), itg_data.integral_type, expression_ir["entity_type"], integrand_map, expression_ir["tensor_shape"], options, visualise, ) expression_ir.update(integral_ir) # Fetch name expression_ir["name"] = integral_names[(form_index, itg_data_index)] ir["expression"] = CommonExpressionIR(**expression_ir) irs.append(IntegralIR(**ir)) return irs def _compute_form_ir( form_data, form_id, prefix, form_names, integral_names, element_numbers, finite_element_hashes, object_names, ) -> FormIR: """Compute intermediate representation of form.""" logger.info(f"Computing IR for form {form_id}") # Store id ir = {"id": form_id} # Compute common data ir["name"] = form_names[form_id] ir["signature"] = form_data.original_form.signature() ir["rank"] = len(form_data.original_form.arguments()) ir["num_coefficients"] = len(form_data.reduced_coefficients) ir["num_constants"] = len(form_data.original_form.constants()) ir["coefficient_names"] = [ object_names.get(id(obj), f"w{j}") for j, obj in enumerate(form_data.reduced_coefficients) ] ir["constant_names"] = [ object_names.get(id(obj), f"c{j}") for j, obj in enumerate(form_data.original_form.constants()) ] ir["original_coefficient_positions"] = form_data.original_coefficient_positions ir["finite_element_hashes"] = [ finite_element_hashes[e] for e in form_data.argument_elements + form_data.coefficient_elements ] form_name = object_names.get(id(form_data.original_form), form_id) ir["name_from_uflfile"] = f"form_{prefix}_{form_name}" # Store names of integrals and subdomain_ids for this form, grouped # by integral types since form points to all integrals it contains, # it has to know their names for codegen phase ir["integral_names"] = {} ir["subdomain_ids"] = {} ufcx_integral_types = ("cell", "exterior_facet", "interior_facet") ir["subdomain_ids"] = {itg_type: [] for itg_type in ufcx_integral_types} ir["integral_names"] = {itg_type: [] for itg_type in ufcx_integral_types} for itg_index, itg_data in enumerate(form_data.integral_data): # UFL is using "otherwise" for default integrals (over whole mesh) # but FFCx needs integers, so otherwise = -1 integral_type = itg_data.integral_type subdomain_ids = [sid if sid != "otherwise" else -1 for sid in itg_data.subdomain_id] if min(subdomain_ids) < -1: raise ValueError("Integral subdomain IDs must be non-negative.") ir["subdomain_ids"][integral_type] += subdomain_ids for _ in range(len(subdomain_ids)): ir["integral_names"][integral_type] += [integral_names[(form_id, itg_index)]] return FormIR(**ir) def _compute_expression_ir( expression, index, prefix, analysis, options, visualise, object_names, finite_element_hashes, ): """Compute intermediate representation of expression.""" logger.info(f"Computing IR for expression {index}") # Compute representation ir = {} base_ir = {} original_expression = (expression[2], expression[1]) base_ir["name"] = naming.expression_name(original_expression, prefix) original_expression = expression[2] points = expression[1] expression = expression[0] try: cell = ufl.domain.extract_unique_domain(expression).ufl_cell() except AttributeError: # This case corresponds to a spatially constant expression # without any dependencies cell = None # Prepare dimensions of all unique element in expression, including # elements for arguments, coefficients and coordinate mappings element_dimensions = { element: element.dim + element.num_global_support_dofs for element in analysis.unique_elements } # Extract dimensions for elements of arguments only arguments = ufl.algorithms.extract_arguments(expression) argument_elements = tuple(f.ufl_function_space().ufl_element() for f in arguments) argument_dimensions = [element_dimensions[element] for element in argument_elements] tensor_shape = argument_dimensions base_ir["tensor_shape"] = tensor_shape base_ir["shape"] = list(expression.ufl_shape) coefficients = ufl.algorithms.extract_coefficients(expression) coefficient_numbering = {} for i, coeff in enumerate(coefficients): coefficient_numbering[coeff] = i # Add coefficient numbering to IR base_ir["coefficient_numbering"] = coefficient_numbering original_coefficient_positions = [] original_coefficients = ufl.algorithms.extract_coefficients(original_expression) for coeff in coefficients: original_coefficient_positions.append(original_coefficients.index(coeff)) ir["coefficient_names"] = [ object_names.get(id(obj), f"w{j}") for j, obj in enumerate(coefficients) ] ir["constant_names"] = [ object_names.get(id(obj), f"c{j}") for j, obj in enumerate(ufl.algorithms.analysis.extract_constants(expression)) ] expression_name = object_names.get(id(original_expression), index) ir["name_from_uflfile"] = f"expression_{prefix}_{expression_name}" if len(argument_elements) > 1: raise RuntimeError("Expression with more than one Argument not implemented.") ir["original_coefficient_positions"] = original_coefficient_positions coefficient_elements = tuple(f.ufl_element() for f in coefficients) offsets = {} _offset = 0 for i, el in enumerate(coefficient_elements): offsets[coefficients[i]] = _offset _offset += element_dimensions[el] # Copy offsets also into IR base_ir["coefficient_offsets"] = offsets base_ir["integral_type"] = "expression" if cell is not None: if (tdim := cell.topological_dimension()) == (pdim := points.shape[1]): base_ir["entity_type"] = "cell" elif tdim - 1 == pdim: base_ir["entity_type"] = "facet" else: raise ValueError( f"Expression on domain with topological dimension {tdim}" + f"with points of dimension {pdim} not supported." ) else: # For spatially invariant expressions, all expressions are evaluated in the cell base_ir["entity_type"] = "cell" # Build offsets for Constants original_constant_offsets = {} _offset = 0 for constant in ufl.algorithms.analysis.extract_constants(original_expression): original_constant_offsets[constant] = _offset _offset += np.prod(constant.ufl_shape, dtype=int) base_ir["original_constant_offsets"] = original_constant_offsets weights = np.array([1.0] * points.shape[0]) rule = QuadratureRule(points, weights) integrands = {rule: expression} if cell is None: assert ( len(ir["original_coefficient_positions"]) == 0 and len(base_ir["original_constant_offsets"]) == 0 ) expression_ir = compute_integral_ir( cell, base_ir["integral_type"], base_ir["entity_type"], integrands, tensor_shape, options, visualise, ) base_ir.update(expression_ir) ir["expression"] = CommonExpressionIR(**base_ir) return ExpressionIR(**ir)