Source code for dolfinx.fem

# Copyright (C) 2017-2018 Garth N. Wells and Michal Habera
#
# This file is part of DOLFINx (https://www.fenicsproject.org)
#
# SPDX-License-Identifier:    LGPL-3.0-or-later
"""Tools for assembling and manipulating finite element forms."""

import numpy as np
import numpy.typing as npt

from dolfinx.cpp.fem import IntegralType, transpose_dofmap
from dolfinx.cpp.fem import compute_integration_domains as _compute_integration_domains
from dolfinx.cpp.fem import create_interpolation_data as _create_interpolation_data
from dolfinx.cpp.fem import create_sparsity_pattern as _create_sparsity_pattern
from dolfinx.cpp.fem import discrete_gradient as _discrete_gradient
from dolfinx.cpp.fem import interpolation_matrix as _interpolation_matrix
from dolfinx.cpp.mesh import Topology
from dolfinx.fem.assemble import (
    apply_lifting,
    assemble_matrix,
    assemble_scalar,
    assemble_vector,
    create_matrix,
    create_vector,
    set_bc,
)
from dolfinx.fem.bcs import (
    DirichletBC,
    bcs_by_block,
    dirichletbc,
    locate_dofs_geometrical,
    locate_dofs_topological,
)
from dolfinx.fem.dofmap import DofMap
from dolfinx.fem.element import CoordinateElement, coordinate_element
from dolfinx.fem.forms import (
    Form,
    compile_form,
    create_form,
    extract_function_spaces,
    form,
    form_cpp_class,
)
from dolfinx.fem.function import (
    Constant,
    ElementMetaData,
    Expression,
    Function,
    FunctionSpace,
    functionspace,
)
from dolfinx.geometry import PointOwnershipData as _PointOwnershipData
from dolfinx.la import MatrixCSR as _MatrixCSR


[docs] def create_sparsity_pattern(a: Form): """Create a sparsity pattern from a bilinear form. Args: a: Bilinear form to build a sparsity pattern for. Returns: Sparsity pattern for the form ``a``. Note: The pattern is not finalised, i.e. the caller is responsible for calling ``assemble`` on the sparsity pattern. """ return _create_sparsity_pattern(a._cpp_object)
[docs] def create_interpolation_data( V_to: FunctionSpace, V_from: FunctionSpace, cells: npt.NDArray[np.int32], padding: float = 1e-14, ) -> _PointOwnershipData: """Generate data needed to interpolate discrete functions across different meshes. Args: V_to: Function space to interpolate into V_from: Function space to interpolate from cells: Indices of the cells associated with `V_to` on which to interpolate into. padding: Absolute padding of bounding boxes of all entities on mesh_to Returns: Data needed to interpolation functions defined on function spaces on the meshes. """ return _PointOwnershipData( _create_interpolation_data( V_to.mesh._cpp_object.geometry, V_to.element, V_from.mesh._cpp_object, cells, padding ) )
[docs] def discrete_gradient(space0: FunctionSpace, space1: FunctionSpace) -> _MatrixCSR: """Assemble a discrete gradient operator. The discrete gradient operator interpolates the gradient of a H1 finite element function into a H(curl) space. It is assumed that the H1 space uses an identity map and the H(curl) space uses a covariant Piola map. Args: space0: H1 space to interpolate the gradient from space1: H(curl) space to interpolate into Returns: Discrete gradient operator """ return _discrete_gradient(space0._cpp_object, space1._cpp_object)
def interpolation_matrix(space0: FunctionSpace, space1: FunctionSpace) -> _MatrixCSR: """Assemble an interpolation matrix for two function spaces on the same mesh. Args: space0: space to interpolate from space1: space to interpolate into Returns: Interpolation matrix """ return _MatrixCSR(_interpolation_matrix(space0._cpp_object, space1._cpp_object))
[docs] def compute_integration_domains( integral_type: IntegralType, topology: Topology, entities: np.ndarray, dim: int ): """Given an integral type and a set of entities compute integration entities. This function returns a list `[(id, entities)]`. For cell integrals `entities` are the cell indices. For exterior facet integrals, `entities` is a list of `(cell_index, local_facet_index)` pairs. For interior facet integrals, `entities` is a list of `(cell_index0, local_facet_index0, cell_index1, local_facet_index1)`. `id` refers to the subdomain id used in the definition of the integration measures of the variational form. Note: Owned mesh entities only are returned. Ghost entities are not included. Note: For facet integrals, the topology facet-to-cell and cell-to-facet connectivity must be computed before calling this function. Args: integral_type: Integral type topology: Mesh topology entities: List of mesh entities dim: Topological dimension of entities Returns: List of integration entities """ return _compute_integration_domains(integral_type, topology._cpp_object, entities, dim)
__all__ = [ "Constant", "Expression", "Function", "ElementMetaData", "create_matrix", "compute_integration_domains", "functionspace", "FunctionSpace", "create_sparsity_pattern", "discrete_gradient", "assemble_scalar", "assemble_matrix", "assemble_vector", "apply_lifting", "DirichletBC", "dirichletbc", "bcs_by_block", "DofMap", "Form", "form", "IntegralType", "create_vector", "locate_dofs_geometrical", "locate_dofs_topological", "extract_function_spaces", "transpose_dofmap", "create_interpolation_data", "CoordinateElement", "coordinate_element", "form_cpp_class", "create_form", "compile_form", "set_bc", ]