Note: this is documentation for an old release. View the latest documentation at docs.fenicsproject.org/dolfinx/v0.9.0/cpp/doxygen/df/db1/math_8h_source.html
DOLFINx 0.8.0
DOLFINx C++ interface
Loading...
Searching...
No Matches
math.h
1// Copyright (C) 2021 Igor Baratta
2//
3// This file is part of DOLFINx (https://www.fenicsproject.org)
4//
5// SPDX-License-Identifier: LGPL-3.0-or-later
6
7#pragma once
8
9#include "types.h"
10#include <array>
11#include <basix/mdspan.hpp>
12#include <cmath>
13#include <string>
14#include <type_traits>
15
16namespace dolfinx::math
17{
18
23template <typename U, typename V>
24std::array<typename U::value_type, 3> cross(const U& u, const V& v)
25{
26 assert(u.size() == 3);
27 assert(v.size() == 3);
28 return {u[1] * v[2] - u[2] * v[1], u[2] * v[0] - u[0] * v[2],
29 u[0] * v[1] - u[1] * v[0]};
30}
31
34template <typename T>
35T difference_of_products(T a, T b, T c, T d) noexcept
36{
37 T w = b * c;
38 T err = std::fma(-b, c, w);
39 T diff = std::fma(a, d, -w);
40 return diff + err;
41}
42
49template <typename T>
50auto det(const T* A, std::array<std::size_t, 2> shape)
51{
52 assert(shape[0] == shape[1]);
53
54 // const int nrows = shape[0];
55 switch (shape[0])
56 {
57 case 1:
58 return *A;
59 case 2:
60 /* A(0, 0), A(0, 1), A(1, 0), A(1, 1) */
61 return difference_of_products(A[0], A[1], A[2], A[3]);
62 case 3:
63 {
64 // Leibniz formula combined with Kahan’s method for accurate
65 // computation of 3 x 3 determinants
66 T w0 = difference_of_products(A[3 + 1], A[3 + 2], A[3 * 2 + 1],
67 A[2 * 3 + 2]);
68 T w1 = difference_of_products(A[3], A[3 + 2], A[3 * 2], A[3 * 2 + 2]);
69 T w2 = difference_of_products(A[3], A[3 + 1], A[3 * 2], A[3 * 2 + 1]);
70 T w3 = difference_of_products(A[0], A[1], w1, w0);
71 T w4 = std::fma(A[2], w2, w3);
72 return w4;
73 }
74 default:
75 throw std::runtime_error("math::det is not implemented for "
76 + std::to_string(A[0]) + "x" + std::to_string(A[1])
77 + " matrices.");
78 }
79}
80
85template <typename Matrix>
86auto det(Matrix A)
87{
88 static_assert(Matrix::rank() == 2, "Must be rank 2");
89 assert(A.extent(0) == A.extent(1));
90
91 using value_type = typename Matrix::value_type;
92 const int nrows = A.extent(0);
93 switch (nrows)
94 {
95 case 1:
96 return A(0, 0);
97 case 2:
98 return difference_of_products(A(0, 0), A(0, 1), A(1, 0), A(1, 1));
99 case 3:
100 {
101 // Leibniz formula combined with Kahan’s method for accurate
102 // computation of 3 x 3 determinants
103 value_type w0 = difference_of_products(A(1, 1), A(1, 2), A(2, 1), A(2, 2));
104 value_type w1 = difference_of_products(A(1, 0), A(1, 2), A(2, 0), A(2, 2));
105 value_type w2 = difference_of_products(A(1, 0), A(1, 1), A(2, 0), A(2, 1));
106 value_type w3 = difference_of_products(A(0, 0), A(0, 1), w1, w0);
107 value_type w4 = std::fma(A(0, 2), w2, w3);
108 return w4;
109 }
110 default:
111 throw std::runtime_error("math::det is not implemented for "
112 + std::to_string(A.extent(0)) + "x"
113 + std::to_string(A.extent(1)) + " matrices.");
114 }
115}
116
123template <typename U, typename V>
124void inv(U A, V B)
125{
126 static_assert(U::rank() == 2, "Must be rank 2");
127 static_assert(V::rank() == 2, "Must be rank 2");
128
129 using value_type = typename U::value_type;
130 const std::size_t nrows = A.extent(0);
131 switch (nrows)
132 {
133 case 1:
134 B(0, 0) = 1 / A(0, 0);
135 break;
136 case 2:
137 {
138 value_type idet = 1. / det(A);
139 B(0, 0) = idet * A(1, 1);
140 B(0, 1) = -idet * A(0, 1);
141 B(1, 0) = -idet * A(1, 0);
142 B(1, 1) = idet * A(0, 0);
143 break;
144 }
145 case 3:
146 {
147 value_type w0 = difference_of_products(A(1, 1), A(1, 2), A(2, 1), A(2, 2));
148 value_type w1 = difference_of_products(A(1, 0), A(1, 2), A(2, 0), A(2, 2));
149 value_type w2 = difference_of_products(A(1, 0), A(1, 1), A(2, 0), A(2, 1));
150 value_type w3 = difference_of_products(A(0, 0), A(0, 1), w1, w0);
151 value_type det = std::fma(A(0, 2), w2, w3);
152 assert(det != 0.);
153 value_type idet = 1 / det;
154
155 B(0, 0) = w0 * idet;
156 B(1, 0) = -w1 * idet;
157 B(2, 0) = w2 * idet;
158 B(0, 1) = difference_of_products(A(0, 2), A(0, 1), A(2, 2), A(2, 1)) * idet;
159 B(0, 2) = difference_of_products(A(0, 1), A(0, 2), A(1, 1), A(1, 2)) * idet;
160 B(1, 1) = difference_of_products(A(0, 0), A(0, 2), A(2, 0), A(2, 2)) * idet;
161 B(1, 2) = difference_of_products(A(1, 0), A(0, 0), A(1, 2), A(0, 2)) * idet;
162 B(2, 1) = difference_of_products(A(2, 0), A(0, 0), A(2, 1), A(0, 1)) * idet;
163 B(2, 2) = difference_of_products(A(0, 0), A(1, 0), A(0, 1), A(1, 1)) * idet;
164 break;
165 }
166 default:
167 throw std::runtime_error("math::inv is not implemented for "
168 + std::to_string(A.extent(0)) + "x"
169 + std::to_string(A.extent(1)) + " matrices.");
170 }
171}
172
179template <typename U, typename V, typename P>
180void dot(U A, V B, P C, bool transpose = false)
181{
182 static_assert(U::rank() == 2, "Must be rank 2");
183 static_assert(V::rank() == 2, "Must be rank 2");
184 static_assert(P::rank() == 2, "Must be rank 2");
185
186 if (transpose)
187 {
188 assert(A.extent(0) == B.extent(1));
189 for (std::size_t i = 0; i < A.extent(1); i++)
190 for (std::size_t j = 0; j < B.extent(0); j++)
191 for (std::size_t k = 0; k < A.extent(0); k++)
192 C(i, j) += A(k, i) * B(j, k);
193 }
194 else
195 {
196 assert(A.extent(1) == B.extent(0));
197 for (std::size_t i = 0; i < A.extent(0); i++)
198 for (std::size_t j = 0; j < B.extent(1); j++)
199 for (std::size_t k = 0; k < A.extent(1); k++)
200 C(i, j) += A(i, k) * B(k, j);
201 }
202}
203
210template <typename U, typename V>
211void pinv(U A, V P)
212{
213 static_assert(U::rank() == 2, "Must be rank 2");
214 static_assert(V::rank() == 2, "Must be rank 2");
215
216 assert(A.extent(0) > A.extent(1));
217 assert(P.extent(1) == A.extent(0));
218 assert(P.extent(0) == A.extent(1));
219 using T = typename U::value_type;
220 if (A.extent(1) == 2)
221 {
222 std::array<T, 6> ATb;
223 std::array<T, 4> ATAb, Invb;
224 MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
225 T, MDSPAN_IMPL_STANDARD_NAMESPACE::extents<std::size_t, 2, 3>>
226 AT(ATb.data(), 2, 3);
227 MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
228 T, MDSPAN_IMPL_STANDARD_NAMESPACE::extents<std::size_t, 2, 2>>
229 ATA(ATAb.data(), 2, 2);
230 MDSPAN_IMPL_STANDARD_NAMESPACE::mdspan<
231 T, MDSPAN_IMPL_STANDARD_NAMESPACE::extents<std::size_t, 2, 2>>
232 Inv(Invb.data(), 2, 2);
233
234 for (std::size_t i = 0; i < AT.extent(0); ++i)
235 for (std::size_t j = 0; j < AT.extent(1); ++j)
236 AT(i, j) = A(j, i);
237
238 std::fill(ATAb.begin(), ATAb.end(), 0.0);
239 for (std::size_t i = 0; i < P.extent(0); ++i)
240 for (std::size_t j = 0; j < P.extent(1); ++j)
241 P(i, j) = 0;
242
243 // pinv(A) = (A^T * A)^-1 * A^T
244 dot(AT, A, ATA);
245 inv(ATA, Inv);
246 dot(Inv, AT, P);
247 }
248 else if (A.extent(1) == 1)
249 {
250 T res = 0;
251 for (std::size_t i = 0; i < A.extent(0); ++i)
252 for (std::size_t j = 0; j < A.extent(1); ++j)
253 res += A(i, j) * A(i, j);
254
255 for (std::size_t i = 0; i < A.extent(0); ++i)
256 for (std::size_t j = 0; j < A.extent(1); ++j)
257 P(j, i) = (1 / res) * A(i, j);
258 }
259 else
260 {
261 throw std::runtime_error("math::pinv is not implemented for "
262 + std::to_string(A.extent(0)) + "x"
263 + std::to_string(A.extent(1)) + " matrices.");
264 }
265}
266
267} // namespace dolfinx::math