Stokes equations using Taylor-Hood elements
This demo is implemented in demo_stokes.py
. It shows how
to solve the Stokes problem using Taylor-Hood elements using different
linear solvers.
Equation and problem definition
Strong formulation
with conditions on the boundary \(\partial \Omega = \Gamma_{D} \cup \Gamma_{N}\) of the form:
Note
The sign of the pressure has been changed from the usual definition. This is to generate have a symmetric system of equations.
Weak formulation
The weak formulation reads: find \((u, p) \in V \times Q\) such that
where
Domain and boundary conditions
We consider the lid-driven cavity problem with the following domain and boundary conditions:
\(\Omega := [0,1]\times[0,1]\) (a unit square)
\(\Gamma_D := \partial \Omega\)
\(u_0 := (1, 0)^\top\) at \(x_1 = 1\) and \(u_0 = (0, 0)^\top\) otherwise
\(f := (0, 0)^\top\)
Implementation
The Stokes problem using Taylor-Hood elements is solved using:
Block preconditioner with the
u
andp
fields stored block-wise in a single matrixDirect solver with the
u
andp
fields stored block-wise in a single matrixDirect solver with the
u
andp
fields stored block-wise in a single matrix
The required modules are first imported:
from mpi4py import MPI
from petsc4py import PETSc
import numpy as np
import ufl
from basix.ufl import element, mixed_element
from dolfinx import fem, la
from dolfinx.fem import (Constant, Function, dirichletbc,
extract_function_spaces, form, functionspace,
locate_dofs_topological)
from dolfinx.fem.petsc import assemble_matrix_block, assemble_vector_block
from dolfinx.io import XDMFFile
from dolfinx.mesh import CellType, create_rectangle, locate_entities_boundary
from ufl import div, dx, grad, inner
We create a Mesh
, define functions for
locating geometrically subsets of the boundary, and define a function
for the velocity on the lid:
# Create mesh
msh = create_rectangle(MPI.COMM_WORLD, [np.array([0, 0]), np.array([1, 1])],
[32, 32], CellType.triangle)
# Function to mark x = 0, x = 1 and y = 0
def noslip_boundary(x):
return np.logical_or(np.logical_or(np.isclose(x[0], 0.0), np.isclose(x[0], 1.0)),
np.isclose(x[1], 0.0))
# Function to mark the lid (y = 1)
def lid(x):
return np.isclose(x[1], 1.0)
# Lid velocity
def lid_velocity_expression(x):
return np.stack((np.ones(x.shape[1]), np.zeros(x.shape[1])))
Two function spaces
are
defined using different finite elements. P2
corresponds to a
continuous piecewise quadratic basis (vector) and P1
to a continuous
piecewise linear basis (scalar).
P2 = element("Lagrange", msh.basix_cell(), 2, shape=(msh.geometry.dim,))
P1 = element("Lagrange", msh.basix_cell(), 1)
V, Q = functionspace(msh, P2), functionspace(msh, P1)
Boundary conditions for the velocity field are defined:
# No-slip condition on boundaries where x = 0, x = 1, and y = 0
noslip = np.zeros(msh.geometry.dim, dtype=PETSc.ScalarType) # type: ignore
facets = locate_entities_boundary(msh, 1, noslip_boundary)
bc0 = dirichletbc(noslip, locate_dofs_topological(V, 1, facets), V)
# Driving (lid) velocity condition on top boundary (y = 1)
lid_velocity = Function(V)
lid_velocity.interpolate(lid_velocity_expression)
facets = locate_entities_boundary(msh, 1, lid)
bc1 = dirichletbc(lid_velocity, locate_dofs_topological(V, 1, facets))
# Collect Dirichlet boundary conditions
bcs = [bc0, bc1]
The bilinear and linear forms for the Stokes equations are defined using a a blocked structure:
# Define variational problem
(u, p) = ufl.TrialFunction(V), ufl.TrialFunction(Q)
(v, q) = ufl.TestFunction(V), ufl.TestFunction(Q)
f = Constant(msh, (PETSc.ScalarType(0), PETSc.ScalarType(0))) # type: ignore
a = form([[inner(grad(u), grad(v)) * dx, inner(p, div(v)) * dx],
[inner(div(u), q) * dx, None]])
L = form([inner(f, v) * dx, inner(Constant(msh, PETSc.ScalarType(0)), q) * dx]) # type: ignore
A block-diagonal preconditioner will be used with the iterative solvers for this problem:
a_p11 = form(inner(p, q) * dx)
a_p = [[a[0][0], None],
[None, a_p11]]
Nested matrix solver
We assemble the bilinear form into a nested matrix A
, and call the
assemble()
method to communicate shared entries in parallel. Rows
and columns in A
that correspond to degrees-of-freedom with
Dirichlet boundary conditions wil be zeroed by the assembler, and a
value of 1 will be set on the diagonal for these rows.
def nested_iterative_solver():
"""Solve the Stokes problem using nest matrices and an iterative solver."""
# Assemble nested matrix operators
A = fem.petsc.assemble_matrix_nest(a, bcs=bcs)
A.assemble()
# Create a nested matrix P to use as the preconditioner. The
# top-left block of P is shared with the top-left block of A. The
# bottom-right diagonal entry is assembled from the form a_p11:
P11 = fem.petsc.assemble_matrix(a_p11, [])
P = PETSc.Mat().createNest([[A.getNestSubMatrix(0, 0), None], [None, P11]])
P.assemble()
A00 = A.getNestSubMatrix(0, 0)
A00.setOption(PETSc.Mat.Option.SPD, True)
P00, P11 = P.getNestSubMatrix(0, 0), P.getNestSubMatrix(1, 1)
P00.setOption(PETSc.Mat.Option.SPD, True)
P11.setOption(PETSc.Mat.Option.SPD, True)
# Assemble right-hand side vector
b = fem.petsc.assemble_vector_nest(L)
# Modify ('lift') the RHS for Dirichlet boundary conditions
fem.petsc.apply_lifting_nest(b, a, bcs=bcs)
# Sum contributions for vector entries that are share across
# parallel processes
for b_sub in b.getNestSubVecs():
b_sub.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
# Set Dirichlet boundary condition values in the RHS vector
bcs0 = fem.bcs_by_block(extract_function_spaces(L), bcs)
fem.petsc.set_bc_nest(b, bcs0)
# The pressure field is determined only up to a constant. We supply
# a vector that spans the nullspace to the solver, and any component
# of the solution in this direction will be eliminated during the
# solution process.
null_vec = fem.petsc.create_vector_nest(L)
# Set velocity part to zero and the pressure part to a non-zero
# constant
null_vecs = null_vec.getNestSubVecs()
null_vecs[0].set(0.0), null_vecs[1].set(1.0)
# Normalize the vector that spans the nullspace, create a nullspace
# object, and attach it to the matrix
null_vec.normalize()
nsp = PETSc.NullSpace().create(vectors=[null_vec])
assert nsp.test(A)
A.setNullSpace(nsp)
# Create a MINRES Krylov solver and a block-diagonal preconditioner
# using PETSc's additive fieldsplit preconditioner
ksp = PETSc.KSP().create(msh.comm)
ksp.setOperators(A, P)
ksp.setType("minres")
ksp.setTolerances(rtol=1e-9)
ksp.getPC().setType("fieldsplit")
ksp.getPC().setFieldSplitType(PETSc.PC.CompositeType.ADDITIVE)
# Define the matrix blocks in the preconditioner with the velocity
# and pressure matrix index sets
nested_IS = P.getNestISs()
ksp.getPC().setFieldSplitIS(("u", nested_IS[0][0]), ("p", nested_IS[0][1]))
# Set the preconditioners for each block. For the top-left
# Laplace-type operator we use algebraic multigrid. For the
# lower-right block we use a Jacobi preconditioner. By default, GAMG
# will infer the correct near-nullspace from the matrix block size.
ksp_u, ksp_p = ksp.getPC().getFieldSplitSubKSP()
ksp_u.setType("preonly")
ksp_u.getPC().setType("gamg")
ksp_p.setType("preonly")
ksp_p.getPC().setType("jacobi")
# Create finite element {py:class}`Function <dolfinx.fem.Function>`s
# for the velocity (on the space `V`) and for the pressure (on the
# space `Q`). The vectors for `u` and `p` are combined to form a
# nested vector and the system is solved.
u, p = Function(V), Function(Q)
x = PETSc.Vec().createNest([la.create_petsc_vector_wrap(u.x),
la.create_petsc_vector_wrap(p.x)])
ksp.solve(b, x)
# Save solution to file in XDMF format for visualization, e.g. with
# ParaView. Before writing to file, ghost values are updated using
# `scatter_forward`.
with XDMFFile(MPI.COMM_WORLD, "out_stokes/velocity.xdmf", "w") as ufile_xdmf:
u.x.scatter_forward()
P1 = element("Lagrange", msh.basix_cell(), 1, shape=(msh.geometry.dim,))
u1 = Function(functionspace(msh, P1))
u1.interpolate(u)
ufile_xdmf.write_mesh(msh)
ufile_xdmf.write_function(u1)
with XDMFFile(MPI.COMM_WORLD, "out_stokes/pressure.xdmf", "w") as pfile_xdmf:
p.x.scatter_forward()
pfile_xdmf.write_mesh(msh)
pfile_xdmf.write_function(p)
# Compute norms of the solution vectors
norm_u = u.x.norm()
norm_p = p.x.norm()
if MPI.COMM_WORLD.rank == 0:
print(f"(A) Norm of velocity coefficient vector (nested, iterative): {norm_u}")
print(f"(A) Norm of pressure coefficient vector (nested, iterative): {norm_p}")
return norm_u, norm_p
Monolithic block iterative solver
We now solve the same Stokes problem, but using monolithic (non-nested) matrices. We first create a helper function for assembling the linear operators and the RHS vector.
def block_operators():
"""Return block operators and block RHS vector for the Stokes
problem"""
# Assembler matrix operator, preconditioner and RHS vector into
# single objects but preserving block structure
A = assemble_matrix_block(a, bcs=bcs)
A.assemble()
P = assemble_matrix_block(a_p, bcs=bcs)
P.assemble()
b = assemble_vector_block(L, a, bcs=bcs)
# Set the nullspace for pressure (since pressure is determined only
# up to a constant)
null_vec = A.createVecLeft()
offset = V.dofmap.index_map.size_local * V.dofmap.index_map_bs
null_vec.array[offset:] = 1.0
null_vec.normalize()
nsp = PETSc.NullSpace().create(vectors=[null_vec])
assert nsp.test(A)
A.setNullSpace(nsp)
return A, P, b
The following function solves the Stokes problem using a block-diagonal preconditioner and monolithic PETSc matrices.
def block_iterative_solver():
"""Solve the Stokes problem using blocked matrices and an iterative
solver."""
# Assembler the operators and RHS vector
A, P, b = block_operators()
# Build PETSc index sets for each field (global dof indices for each
# field)
V_map = V.dofmap.index_map
Q_map = Q.dofmap.index_map
offset_u = V_map.local_range[0] * V.dofmap.index_map_bs + Q_map.local_range[0]
offset_p = offset_u + V_map.size_local * V.dofmap.index_map_bs
is_u = PETSc.IS().createStride(V_map.size_local * V.dofmap.index_map_bs, offset_u, 1, comm=PETSc.COMM_SELF)
is_p = PETSc.IS().createStride(Q_map.size_local, offset_p, 1, comm=PETSc.COMM_SELF)
# Create a MINRES Krylov solver and a block-diagonal preconditioner
# using PETSc's additive fieldsplit preconditioner
ksp = PETSc.KSP().create(msh.comm)
ksp.setOperators(A, P)
ksp.setTolerances(rtol=1e-9)
ksp.setType("minres")
ksp.getPC().setType("fieldsplit")
ksp.getPC().setFieldSplitType(PETSc.PC.CompositeType.ADDITIVE)
ksp.getPC().setFieldSplitIS(("u", is_u), ("p", is_p))
# Configure velocity and pressure sub-solvers
ksp_u, ksp_p = ksp.getPC().getFieldSplitSubKSP()
ksp_u.setType("preonly")
ksp_u.getPC().setType("gamg")
ksp_p.setType("preonly")
ksp_p.getPC().setType("jacobi")
# The matrix A combined the vector velocity and scalar pressure
# parts, hence has a block size of 1. Unlike the MatNest case, GAMG
# cannot infer the correct near-nullspace from the matrix block
# size. Therefore, we set block size on the top-left block of the
# preconditioner so that GAMG can infer the appropriate near
# nullspace.
ksp.getPC().setUp()
Pu, _ = ksp_u.getPC().getOperators()
Pu.setBlockSize(msh.topology.dim)
# Create a block vector (x) to store the full solution and solve
x = A.createVecRight()
ksp.solve(b, x)
# Create Functions to split u and p
u, p = Function(V), Function(Q)
offset = V_map.size_local * V.dofmap.index_map_bs
u.x.array[:offset] = x.array_r[:offset]
p.x.array[:(len(x.array_r) - offset)] = x.array_r[offset:]
# Compute the $L^2$ norms of the solution vectors
norm_u, norm_p = u.x.norm(), p.x.norm()
if MPI.COMM_WORLD.rank == 0:
print(f"(B) Norm of velocity coefficient vector (blocked, iterative): {norm_u}")
print(f"(B) Norm of pressure coefficient vector (blocked, iterative): {norm_p}")
return norm_u, norm_p
Monolithic block direct solver
We now solve the same Stokes problem again, but using monolithic (non-nested) matrices and a direct (LU) solver.
def block_direct_solver():
"""Solve the Stokes problem using blocked matrices and a direct
solver."""
# Assembler the block operator and RHS vector
A, _, b = block_operators()
# Create a solver
ksp = PETSc.KSP().create(msh.comm)
ksp.setOperators(A)
ksp.setType("preonly")
# Set the solver type to MUMPS (LU solver) and configure MUMPS to
# handle pressure nullspace
pc = ksp.getPC()
pc.setType("lu")
pc.setFactorSolverType("mumps")
try:
pc.setFactorSetUpSolverType()
except PETSc.Error as e:
if e.ierr == 92:
print("The required PETSc solver/preconditioner is not available. Exiting.")
print(e)
exit(0)
else:
raise e
pc.getFactorMatrix().setMumpsIcntl(icntl=24, ival=1) # For pressure nullspace
pc.getFactorMatrix().setMumpsIcntl(icntl=25, ival=0) # For pressure nullspace
# Create a block vector (x) to store the full solution, and solve
x = A.createVecLeft()
ksp.solve(b, x)
# Create Functions and scatter x solution
u, p = Function(V), Function(Q)
offset = V.dofmap.index_map.size_local * V.dofmap.index_map_bs
u.x.array[:offset] = x.array_r[:offset]
p.x.array[:(len(x.array_r) - offset)] = x.array_r[offset:]
# Compute the $L^2$ norms of the u and p vectors
norm_u, norm_p = u.x.norm(), p.x.norm()
if MPI.COMM_WORLD.rank == 0:
print(f"(C) Norm of velocity coefficient vector (blocked, direct): {norm_u}")
print(f"(C) Norm of pressure coefficient vector (blocked, direct): {norm_p}")
return norm_u, norm_p
Non-blocked direct solver
We now solve the Stokes problem, but using monolithic matrix with the velocity and pressure degrees of freedom interleaved, i.e. without any u/p block structure in the assembled matrix. A direct (LU) solver is used.
def mixed_direct():
# Create the Taylot-Hood function space
TH = mixed_element([P2, P1])
W = functionspace(msh, TH)
# No slip boundary condition
W0, _ = W.sub(0).collapse()
noslip = Function(W0)
facets = locate_entities_boundary(msh, 1, noslip_boundary)
dofs = locate_dofs_topological((W.sub(0), W0), 1, facets)
bc0 = dirichletbc(noslip, dofs, W.sub(0))
# Driving velocity condition u = (1, 0) on top boundary (y = 1)
lid_velocity = Function(W0)
lid_velocity.interpolate(lid_velocity_expression)
facets = locate_entities_boundary(msh, 1, lid)
dofs = locate_dofs_topological((W.sub(0), W0), 1, facets)
bc1 = dirichletbc(lid_velocity, dofs, W.sub(0))
# Collect Dirichlet boundary conditions
bcs = [bc0, bc1]
# Define variational problem
(u, p) = ufl.TrialFunctions(W)
(v, q) = ufl.TestFunctions(W)
f = Function(W0)
a = form((inner(grad(u), grad(v)) + inner(p, div(v)) + inner(div(u), q)) * dx)
L = form(inner(f, v) * dx)
# Assemble LHS matrix and RHS vector
A = fem.petsc.assemble_matrix(a, bcs=bcs)
A.assemble()
b = fem.petsc.assemble_vector(L)
fem.petsc.apply_lifting(b, [a], bcs=[bcs])
b.ghostUpdate(addv=PETSc.InsertMode.ADD, mode=PETSc.ScatterMode.REVERSE)
# Set Dirichlet boundary condition values in the RHS
fem.petsc.set_bc(b, bcs)
# Create and configure solver
ksp = PETSc.KSP().create(msh.comm)
ksp.setOperators(A)
ksp.setType("preonly")
# Configure MUMPS to handle pressure nullspace
pc = ksp.getPC()
pc.setType("lu")
pc.setFactorSolverType("mumps")
pc.setFactorSetUpSolverType()
pc.getFactorMatrix().setMumpsIcntl(icntl=24, ival=1)
pc.getFactorMatrix().setMumpsIcntl(icntl=25, ival=0)
# Compute the solution
U = Function(W)
try:
ksp.solve(b, U.vector)
except PETSc.Error as e:
if e.ierr == 92:
print("The required PETSc solver/preconditioner is not available. Exiting.")
print(e)
exit(0)
else:
raise e
# Split the mixed solution and collapse
u, p = U.sub(0).collapse(), U.sub(1).collapse()
# Compute norms
norm_u, norm_p = u.x.norm(), p.x.norm()
if MPI.COMM_WORLD.rank == 0:
print(f"(D) Norm of velocity coefficient vector (monolithic, direct): {norm_u}")
print(f"(D) Norm of pressure coefficient vector (monolithic, direct): {norm_p}")
return norm_u, norm_u
# Solve using PETSc MatNest
norm_u_0, norm_p_0 = nested_iterative_solver()
# Solve using PETSc block matrices and an iterative solver
norm_u_1, norm_p_1 = block_iterative_solver()
assert np.isclose(norm_u_1, norm_u_0)
assert np.isclose(norm_p_1, norm_p_0)
# Solve using PETSc block matrices and an LU solver
norm_u_2, norm_p_2 = block_direct_solver()
assert np.isclose(norm_u_2, norm_u_0)
assert np.isclose(norm_p_2, norm_p_0)
# Solve using a non-blocked matrix and an LU solver
norm_u_3, norm_p_3 = mixed_direct()
assert np.isclose(norm_u_3, norm_u_0)