Electromagnetic scattering from a wire with scattering boundary conditions
Copyright (C) 2022 Michele Castriotta, Igor Baratta, Jørgen S. Dokken
This demo is implemented in two files: one for the mesh generation with gmsh, and one for the variational forms and the solver. It illustrates how to:
Use complex quantities in FEniCSx
Setup and solve Maxwell’s equations
Implement Scattering Boundary Conditions
Equations, problem definition and implementation
First of all, let’s import the modules that will be used:
import sys
from typing import Tuple
from analytical_efficiencies_wire import calculate_analytical_efficiencies
from mesh_wire import generate_mesh_wire
import ufl
from basix.ufl import element
from dolfinx import default_scalar_type, fem, io, plot
from dolfinx.fem.petsc import LinearProblem
from mpi4py import MPI
try:
import gmsh
except ModuleNotFoundError:
print("This demo requires gmsh to be installed")
sys.exit(0)
import numpy as np
try:
import pyvista
have_pyvista = True
except ModuleNotFoundError:
print("pyvista and pyvistaqt are required to visualise the solution")
have_pyvista = False
Since we want to solve time-harmonic Maxwell’s equation, we need to solve a complex-valued PDE, and therefore need to use PETSc compiled with complex numbers.
if not np.issubdtype(default_scalar_type, np.complexfloating):
print("Demo should only be executed with DOLFINx complex mode")
exit(0)
Now, let’s consider an infinite metallic wire immersed in a background
medium (e.g. vacuum or water). Let’s now consider the plane cutting
the wire perpendicularly to its axis at a generic point. Such plane
with
The following class implements this functions. The inputs to the
function are the angle
class BackgroundElectricField:
def __init__(self, theta: float, n_bkg: float, k0: complex):
self.theta = theta # incident angle
self.k0 = k0 # vacuum wavevector
self.n_bkg = n_bkg # background refractive index
def eval(self, x: np.typing.NDArray[np.float64]) -> Tuple[np.typing.NDArray[np.complex128],
np.typing.NDArray[np.complex128]]:
kx = self.n_bkg * self.k0 * np.cos(self.theta)
ky = self.n_bkg * self.k0 * np.sin(self.theta)
phi = kx * x[0] + ky * x[1]
ax, ay = np.sin(self.theta), np.cos(self.theta)
return (-ax * np.exp(1j * phi), ay * np.exp(1j * phi))
The Maxwell’s equation for scattering problems takes the following form:
where
with
To form a well-determined system, we add boundary conditions on
with
The radial distance function
def radial_distance(x: ufl.SpatialCoordinate):
"""Returns the radial distance from the origin"""
return ufl.sqrt(x[0]**2 + x[1]**2)
def curl_2d(f: fem.Function):
"""Returns the curl of two 2D vectors as a 3D vector"""
return ufl.as_vector((0, 0, f[1].dx(0) - f[0].dx(1)))
Next we define some mesh specific parameters. Please notice that the
length units are normalized with respect to
pi = np.pi
epsilon_0 = 8.8541878128 * 10**-12
mu_0 = 4 * pi * 10**-7
# Radius of the wire and of the boundary of the domain
radius_wire = 0.050
radius_dom = 1
# The smaller the mesh_factor, the finer is the mesh
mesh_factor = 1.2
# Mesh size inside the wire
in_wire_size = mesh_factor * 7.0e-3
# Mesh size at the boundary of the wire
on_wire_size = mesh_factor * 3.0e-3
# Mesh size in the background
bkg_size = mesh_factor * 60.0e-3
# Mesh size at the boundary
boundary_size = mesh_factor * 30.0e-3
# Tags for the subdomains
au_tag = 1 # gold wire
bkg_tag = 2 # background
boundary_tag = 3 # boundary
We generate the mesh using GMSH and convert it to a
dolfinx.mesh.Mesh
.
model = None
gmsh.initialize(sys.argv)
if MPI.COMM_WORLD.rank == 0:
model = generate_mesh_wire(radius_wire, radius_dom, in_wire_size, on_wire_size, bkg_size,
boundary_size, au_tag, bkg_tag, boundary_tag)
model = MPI.COMM_WORLD.bcast(model, root=0)
domain, cell_tags, facet_tags = io.gmshio.model_to_mesh(model, MPI.COMM_WORLD, 0, gdim=2)
gmsh.finalize()
MPI.COMM_WORLD.barrier()
The mesh is visualized with PyVista
if have_pyvista:
topology, cell_types, geometry = plot.vtk_mesh(domain, 2)
grid = pyvista.UnstructuredGrid(topology, cell_types, geometry)
plotter = pyvista.Plotter()
num_local_cells = domain.topology.index_map(domain.topology.dim).size_local
grid.cell_data["Marker"] = cell_tags.values[cell_tags.indices < num_local_cells]
grid.set_active_scalars("Marker")
plotter.add_mesh(grid, show_edges=True)
plotter.view_xy()
if not pyvista.OFF_SCREEN:
plotter.show()
else:
pyvista.start_xvfb()
figure = plotter.screenshot("wire_mesh.png", window_size=[8000, 8000])
Now we define some other problem specific parameters:
wl0 = 0.4 # Wavelength of the background field
n_bkg = 1.33 # Background refractive index
eps_bkg = n_bkg**2 # Background relative permittivity
k0 = 2 * np.pi / wl0 # Wavevector of the background field
theta = np.pi / 4 # Angle of incidence of the background field
We use a function space consisting of degree 3 Nedelec (first kind) elements to represent the electric field
degree = 3
curl_el = element("N1curl", domain.basix_cell(), degree)
V = fem.functionspace(domain, curl_el)
Next, we can interpolate
f = BackgroundElectricField(theta, n_bkg, k0)
Eb = fem.Function(V)
Eb.interpolate(f.eval)
x = ufl.SpatialCoordinate(domain)
r = radial_distance(x)
# Create test and trial functions
Es = ufl.TrialFunction(V)
v = ufl.TestFunction(V)
# Definition of 3d fields for cross and curl operations
Es_3d = ufl.as_vector((Es[0], Es[1], 0))
v_3d = ufl.as_vector((v[0], v[1], 0))
# Measures for subdomains
dx = ufl.Measure("dx", domain, subdomain_data=cell_tags)
ds = ufl.Measure("ds", domain, subdomain_data=facet_tags)
dDom = dx((au_tag, bkg_tag))
dsbc = ds(boundary_tag)
# Normal to the boundary
n = ufl.FacetNormal(domain)
n_3d = ufl.as_vector((n[0], n[1], 0))
We turn our focus to the permittivity
eps_au = -1.0782 + 1j * 5.8089
We define a permittivity function
D = fem.functionspace(domain, ("DG", 0))
eps = fem.Function(D)
au_cells = cell_tags.find(au_tag)
bkg_cells = cell_tags.find(bkg_tag)
eps.x.array[au_cells] = np.full_like(au_cells, eps_au, dtype=eps.x.array.dtype)
eps.x.array[bkg_cells] = np.full_like(bkg_cells, eps_bkg, dtype=eps.x.array.dtype)
eps.x.scatter_forward()
Next we derive the weak formulation of the Maxwell’s equation plus
with scattering boundary conditions. First, we take the inner products
of the equations with a complex test function
By using
using the divergence theorem
Cancelling
We use the UFL to implement the residual
# Weak form
F = - ufl.inner(ufl.curl(Es), ufl.curl(v)) * dDom \
+ eps * (k0**2) * ufl.inner(Es, v) * dDom \
+ (k0**2) * (eps - eps_bkg) * ufl.inner(Eb, v) * dDom \
+ (1j * k0 * n_bkg + 1 / (2 * r)) \
* ufl.inner(ufl.cross(Es_3d, n_3d), ufl.cross(v_3d, n_3d)) * dsbc
We split the residual into a sesquilinear (lhs) and linear (rhs) form
and solve the problem. We store the scattered field Esh
:
a, L = ufl.lhs(F), ufl.rhs(F)
problem = LinearProblem(a, L, bcs=[], petsc_options={"ksp_type": "preonly", "pc_type": "lu"})
Esh = problem.solve()
We save the solution as an ADIOS2 bp folder. In order to do so, we need to interpolate our solution discretized with Nedelec elements into a suitable discontinuous Lagrange space.
gdim = domain.geometry.dim
V_dg = fem.functionspace(domain, ("Discontinuous Lagrange", degree, (gdim,)))
Esh_dg = fem.Function(V_dg)
Esh_dg.interpolate(Esh)
with io.VTXWriter(domain.comm, "Esh.bp", Esh_dg) as vtx:
vtx.write(0.0)
We visualize the solution using PyVista. For more information about saving and visualizing vector fields discretized with Nedelec elements, check this DOLFINx demo.
if have_pyvista:
V_cells, V_types, V_x = plot.vtk_mesh(V_dg)
V_grid = pyvista.UnstructuredGrid(V_cells, V_types, V_x)
Esh_values = np.zeros((V_x.shape[0], 3), dtype=np.float64)
Esh_values[:, : domain.topology.dim] = Esh_dg.x.array.reshape(V_x.shape[0], domain.topology.dim).real
V_grid.point_data["u"] = Esh_values
plotter = pyvista.Plotter()
plotter.add_text("magnitude", font_size=12, color="black")
plotter.add_mesh(V_grid.copy(), show_edges=True)
plotter.view_xy()
plotter.link_views()
if not pyvista.OFF_SCREEN:
plotter.show()
else:
pyvista.start_xvfb()
plotter.screenshot("Esh.png", window_size=[800, 800])
Next we can calculate the total electric field
E = fem.Function(V)
E.x.array[:] = Eb.x.array[:] + Esh.x.array[:]
E_dg = fem.Function(V_dg)
E_dg.interpolate(E)
with io.VTXWriter(domain.comm, "E.bp", E_dg) as vtx:
vtx.write(0.0)
We validate our numerical solution by computing the absorption,
scattering and extinction efficiencies, which are quantities that
define how much light is absorbed and scattered by the wire. First of
all, we calculate the analytical efficiencies with the
calculate_analytical_efficiencies
function defined in a separate
file:
# Calculation of analytical efficiencies
q_abs_analyt, q_sca_analyt, q_ext_analyt = calculate_analytical_efficiencies(
eps_au, n_bkg, wl0, radius_wire)
Now we can calculate the numerical efficiencies. The formula for the absorption, scattering and extinction are:
with
We can calculate these values in the following way:
# Vacuum impedance
Z0 = np.sqrt(mu_0 / epsilon_0)
# Magnetic field H
Hsh_3d = -1j * curl_2d(Esh) / (Z0 * k0 * n_bkg)
Esh_3d = ufl.as_vector((Esh[0], Esh[1], 0))
E_3d = ufl.as_vector((E[0], E[1], 0))
# Intensity of the electromagnetic fields I0 = 0.5*E0**2/Z0 E0 =
# np.sqrt(ax**2 + ay**2) = 1, see background_electric_field
I0 = 0.5 / Z0
# Geometrical cross section of the wire
gcs = 2 * radius_wire
# Quantities for the calculation of efficiencies
P = 0.5 * ufl.inner(ufl.cross(Esh_3d, ufl.conj(Hsh_3d)), n_3d)
Q = 0.5 * np.imag(eps_au) * k0 * (ufl.inner(E_3d, E_3d)) / Z0 / n_bkg
# Define integration domain for the wire
dAu = dx(au_tag)
# Normalized absorption efficiency
q_abs_fenics_proc = (fem.assemble_scalar(fem.form(Q * dAu)) / gcs / I0).real
q_abs_fenics = domain.comm.allreduce(q_abs_fenics_proc, op=MPI.SUM)
# Normalized scattering efficiency
q_sca_fenics_proc = (fem.assemble_scalar(fem.form(P * dsbc)) / gcs / I0).real
q_sca_fenics = domain.comm.allreduce(q_sca_fenics_proc, op=MPI.SUM)
# Extinction efficiency
q_ext_fenics = q_abs_fenics + q_sca_fenics
# Error calculation
err_abs = np.abs(q_abs_analyt - q_abs_fenics) / q_abs_analyt
err_sca = np.abs(q_sca_analyt - q_sca_fenics) / q_sca_analyt
err_ext = np.abs(q_ext_analyt - q_ext_fenics) / q_ext_analyt
# Check if errors are smaller than 1%
assert err_abs < 0.01
assert err_sca < 0.01
assert err_ext < 0.01
if domain.comm.rank == 0:
print()
print(f"The analytical absorption efficiency is {q_abs_analyt}")
print(f"The numerical absorption efficiency is {q_abs_fenics}")
print(f"The error is {err_abs*100}%")
print()
print(f"The analytical scattering efficiency is {q_sca_analyt}")
print(f"The numerical scattering efficiency is {q_sca_fenics}")
print(f"The error is {err_sca*100}%")
print()
print(f"The analytical extinction efficiency is {q_ext_analyt}")
print(f"The numerical extinction efficiency is {q_ext_fenics}")
print(f"The error is {err_ext*100}%")