Note: this is documentation for an old release. View the latest documentation at docs.fenicsproject.org/dolfinx/v0.9.0/cpp/doxygen/df/ddd/CoordinateElement_8h_source.html
DOLFINx 0.6.0
DOLFINx C++ interface
Loading...
Searching...
No Matches
CoordinateElement.h
1// Copyright (C) 2018-2020 Garth N. Wells and Chris N. Richardson
2//
3// This file is part of DOLFINx (https://www.fenicsproject.org)
4//
5// SPDX-License-Identifier: LGPL-3.0-or-later
6
7#pragma once
8
9#include "ElementDofLayout.h"
10#include <algorithm>
11#include <array>
12#include <basix/element-families.h>
13#include <basix/mdspan.hpp>
14#include <cstdint>
15#include <dolfinx/common/math.h>
16#include <dolfinx/mesh/cell_types.h>
17#include <memory>
18#include <span>
19
20namespace basix
21{
22class FiniteElement;
23}
24
25namespace dolfinx::fem
26{
27
32{
33public:
36 explicit CoordinateElement(
37 std::shared_ptr<const basix::FiniteElement> element);
38
45 basix::element::lagrange_variant type
46 = basix::element::lagrange_variant::unset);
47
49 virtual ~CoordinateElement() = default;
50
54
56 int degree() const;
57
64 int dim() const;
65
67 basix::element::lagrange_variant variant() const;
68
75 std::array<std::size_t, 4> tabulate_shape(std::size_t nd,
76 std::size_t num_points) const;
77
87 void tabulate(int nd, std::span<const double> X,
88 std::array<std::size_t, 2> shape,
89 std::span<double> basis) const;
90
99 template <typename U, typename V, typename W>
100 static void compute_jacobian(const U& dphi, const V& cell_geometry, W&& J)
101 {
102 math::dot(cell_geometry, dphi, J, true);
103 }
104
108 template <typename U, typename V>
109 static void compute_jacobian_inverse(const U& J, V&& K)
110 {
111 const int gdim = J.extent(0);
112 const int tdim = K.extent(0);
113 if (gdim == tdim)
114 math::inv(J, K);
115 else
116 math::pinv(J, K);
117 }
118
124 template <typename U>
125 static double
126 compute_jacobian_determinant(const U& J, std::span<typename U::value_type> w)
127 {
128 static_assert(U::rank() == 2, "Must be rank 2");
129 if (J.extent(0) == J.extent(1))
130 return math::det(J);
131 else
132 {
133 assert(w.size() >= 2 * J.extent(0) * J.extent(1));
134
135 using T = typename U::element_type;
136 namespace stdex = std::experimental;
137 using mdspan2_t = stdex::mdspan<T, stdex::dextents<std::size_t, 2>>;
138 mdspan2_t B(w.data(), J.extent(1), J.extent(0));
139 mdspan2_t BA(w.data() + J.extent(0) * J.extent(1), B.extent(0),
140 J.extent(1));
141
142 for (std::size_t i = 0; i < B.extent(0); ++i)
143 for (std::size_t j = 0; j < B.extent(1); ++j)
144 B(i, j) = J(j, i);
145
146 // Zero working memory of BA
147 std::fill_n(BA.data_handle(), BA.size(), 0);
148 math::dot(B, J, BA);
149 return std::sqrt(math::det(BA));
150 }
151 }
152
155
162 template <typename U, typename V, typename W>
163 static void push_forward(U&& x, const V& cell_geometry, const W& phi)
164 {
165 for (std::size_t i = 0; i < x.extent(0); ++i)
166 for (std::size_t j = 0; j < x.extent(1); ++j)
167 x(i, j) = 0;
168
169 // Compute x = phi * cell_geometry;
170 math::dot(phi, cell_geometry, x);
171 }
172
183 template <typename U, typename V, typename W>
184 static void pull_back_affine(U&& X, const V& K,
185 const std::array<double, 3>& x0, const W& x)
186 {
187 assert(X.extent(0) == x.extent(0));
188 assert(X.extent(1) == K.extent(0));
189 assert(x.extent(1) == K.extent(1));
190 for (std::size_t i = 0; i < X.extent(0); ++i)
191 for (std::size_t j = 0; j < X.extent(1); ++j)
192 X(i, j) = 0;
193
194 // Calculate X for each point
195 for (std::size_t p = 0; p < x.extent(0); ++p)
196 for (std::size_t i = 0; i < K.extent(0); ++i)
197 for (std::size_t j = 0; j < K.extent(1); ++j)
198 X(p, i) += K(i, j) * (x(p, j) - x0[j]);
199 }
200
203 = std::experimental::mdspan<double,
204 std::experimental::dextents<std::size_t, 2>>;
207 = std::experimental::mdspan<const double,
208 std::experimental::dextents<std::size_t, 2>>;
209
221 void pull_back_nonaffine(mdspan2_t X, cmdspan2_t x, cmdspan2_t cell_geometry,
222 double tol = 1.0e-8, int maxit = 10) const;
223
225 void permute_dofs(const std::span<std::int32_t>& dofs,
226 std::uint32_t cell_perm) const;
227
229 void unpermute_dofs(const std::span<std::int32_t>& dofs,
230 std::uint32_t cell_perm) const;
231
237 bool needs_dof_permutations() const;
238
241 bool is_affine() const noexcept { return _is_affine; }
242
243private:
244 // Flag denoting affine map
245 bool _is_affine;
246
247 // Basix Element
248 std::shared_ptr<const basix::FiniteElement> _element;
249};
250} // namespace dolfinx::fem
A CoordinateElement manages coordinate mappings for isoparametric cells.
Definition: CoordinateElement.h:32
ElementDofLayout create_dof_layout() const
Compute and return the dof layout.
Definition: CoordinateElement.cpp:55
static void compute_jacobian(const U &dphi, const V &cell_geometry, W &&J)
Compute Jacobian for a cell with given geometry using the basis functions and first order derivatives...
Definition: CoordinateElement.h:100
static void pull_back_affine(U &&X, const V &K, const std::array< double, 3 > &x0, const W &x)
Compute reference coordinates X for physical coordinates x for an affine map. For the affine case,...
Definition: CoordinateElement.h:184
basix::element::lagrange_variant variant() const
The variant of the element.
Definition: CoordinateElement.cpp:189
mesh::CellType cell_shape() const
Cell shape.
Definition: CoordinateElement.cpp:36
static void compute_jacobian_inverse(const U &J, V &&K)
Compute the inverse of the Jacobian.
Definition: CoordinateElement.h:109
std::array< std::size_t, 4 > tabulate_shape(std::size_t nd, std::size_t num_points) const
Shape of array to fill when calling FiniteElement::tabulate
Definition: CoordinateElement.cpp:42
int degree() const
The polynomial degree of the element.
Definition: CoordinateElement.cpp:177
void pull_back_nonaffine(mdspan2_t X, cmdspan2_t x, cmdspan2_t cell_geometry, double tol=1.0e-8, int maxit=10) const
Compute reference coordinates X for physical coordinates x for a non-affine map.
Definition: CoordinateElement.cpp:62
std::experimental::mdspan< double, std::experimental::dextents< std::size_t, 2 > > mdspan2_t
mdspan typedef
Definition: CoordinateElement.h:204
void tabulate(int nd, std::span< const double > X, std::array< std::size_t, 2 > shape, std::span< double > basis) const
Evaluate basis values and derivatives at set of points.
Definition: CoordinateElement.cpp:47
int dim() const
The dimension of the geometry element space.
Definition: CoordinateElement.cpp:183
virtual ~CoordinateElement()=default
Destructor.
bool is_affine() const noexcept
Check is geometry map is affine.
Definition: CoordinateElement.h:241
static void push_forward(U &&x, const V &cell_geometry, const W &phi)
Compute physical coordinates x for points X in the reference configuration.
Definition: CoordinateElement.h:163
static double compute_jacobian_determinant(const U &J, std::span< typename U::value_type > w)
Compute the determinant of the Jacobian.
Definition: CoordinateElement.h:126
void permute_dofs(const std::span< std::int32_t > &dofs, std::uint32_t cell_perm) const
Permutes a list of DOF numbers on a cell.
Definition: CoordinateElement.cpp:156
void unpermute_dofs(const std::span< std::int32_t > &dofs, std::uint32_t cell_perm) const
Reverses a DOF permutation.
Definition: CoordinateElement.cpp:163
bool needs_dof_permutations() const
Indicates whether the geometry DOF numbers on each cell need permuting.
Definition: CoordinateElement.cpp:170
std::experimental::mdspan< const double, std::experimental::dextents< std::size_t, 2 > > cmdspan2_t
mdspan typedef
Definition: CoordinateElement.h:208
The class represents the degree-of-freedom (dofs) for an element. Dofs are associated with a mesh ent...
Definition: ElementDofLayout.h:31
Finite element method functionality.
Definition: assemble_matrix_impl.h:25
CellType
Cell type identifier.
Definition: cell_types.h:22