--- jupytext: main_language: python text_representation: extension: .md format_name: myst format_version: 0.13 jupytext_version: 1.14.1 --- # Helmholtz equation Copyright (C) 2018 Samuel Groth Helmholtz problem in both complex and real modes In the complex mode, the exact solution is a plane wave propagating at an angle theta to the positive x-axis. Chosen for comparison with results from Ihlenburg's book "Finite Element Analysis of Acoustic Scattering" p138-139. In real mode, the Method of Manufactured Solutions is used to produce the exact solution and source term. ```python import numpy as np import ufl from dolfinx.fem import Function, FunctionSpace, assemble_scalar, form from dolfinx.fem.petsc import LinearProblem from dolfinx.io import XDMFFile from dolfinx.mesh import create_unit_square from ufl import dx, grad, inner from mpi4py import MPI from petsc4py import PETSc # wavenumber k0 = 4 * np.pi # approximation space polynomial degree deg = 1 # number of elements in each direction of msh n_elem = 128 msh = create_unit_square(MPI.COMM_WORLD, n_elem, n_elem) n = ufl.FacetNormal(msh) # Source amplitude if np.issubdtype(PETSc.ScalarType, np.complexfloating): A = PETSc.ScalarType(1 + 1j) else: A = 1 # Test and trial function space V = FunctionSpace(msh, ("Lagrange", deg)) # Define variational problem u = ufl.TrialFunction(V) v = ufl.TestFunction(V) f = Function(V) f.interpolate(lambda x: A * k0**2 * np.cos(k0 * x[0]) * np.cos(k0 * x[1])) a = inner(grad(u), grad(v)) * dx - k0**2 * inner(u, v) * dx L = inner(f, v) * dx # Compute solution uh = Function(V) uh.name = "u" problem = LinearProblem(a, L, u=uh, petsc_options={"ksp_type": "preonly", "pc_type": "lu"}) problem.solve() # Save solution in XDMF format (to be viewed in ParaView, for example) with XDMFFile(MPI.COMM_WORLD, "out_helmholtz/plane_wave.xdmf", "w", encoding=XDMFFile.Encoding.HDF5) as file: file.write_mesh(msh) file.write_function(uh) ``` Calculate $L_2$ and $H^1$ errors of FEM solution and best approximation. This demonstrates the error bounds given in Ihlenburg. Pollution errors are evident for high wavenumbers. ```python # Function space for exact solution - need it to be higher than deg V_exact = FunctionSpace(msh, ("Lagrange", deg + 3)) u_exact = Function(V_exact) u_exact.interpolate(lambda x: A * np.cos(k0 * x[0]) * np.cos(k0 * x[1])) # H1 errors diff = uh - u_exact H1_diff = msh.comm.allreduce(assemble_scalar(form(inner(grad(diff), grad(diff)) * dx)), op=MPI.SUM) H1_exact = msh.comm.allreduce(assemble_scalar(form(inner(grad(u_exact), grad(u_exact)) * dx)), op=MPI.SUM) print("Relative H1 error of FEM solution:", abs(np.sqrt(H1_diff) / np.sqrt(H1_exact))) # L2 errors L2_diff = msh.comm.allreduce(assemble_scalar(form(inner(diff, diff) * dx)), op=MPI.SUM) L2_exact = msh.comm.allreduce(assemble_scalar(form(inner(u_exact, u_exact) * dx)), op=MPI.SUM) print("Relative L2 error of FEM solution:", abs(np.sqrt(L2_diff) / np.sqrt(L2_exact))) ```