--- jupytext: main_language: python text_representation: extension: .md format_name: myst format_version: 0.13 jupytext_version: 1.14.1 --- # Cahn-Hilliard equation This example demonstrates the solution of the Cahn-Hilliard equation, a nonlinear, time-dependent fourth-order PDE. - A mixed finite element method - The $\theta$-method for time-dependent equations - Automatic linearisation - Use of the class {py:class}`NonlinearProblem` - The built-in Newton solver ({py:class}`NewtonSolver`) - Form compiler options - Interpolation of functions - Visualisation of a running simulation with pyvista This demo is implemented in {download}`demo_cahn-hilliard.py`. ## Equation and problem definition The Cahn-Hilliard equation is a parabolic equation and is typically used to model phase separation in binary mixtures. It involves first-order time derivatives, and second- and fourth-order spatial derivatives. The equation reads: $$ \begin{align} \frac{\partial c}{\partial t} - \nabla \cdot M \left(\nabla\left(\frac{d f}{dc} - \lambda \nabla^{2}c\right)\right) &= 0 \quad {\rm in} \ \Omega, \\ M\left(\nabla\left(\frac{d f}{d c} - \lambda \nabla^{2}c\right)\right) \cdot n &= 0 \quad {\rm on} \ \partial\Omega, \\ M \lambda \nabla c \cdot n &= 0 \quad {\rm on} \ \partial\Omega. \end{align} $$ where $c$ is the unknown field, the function $f$ is usually non-convex in $c$ (a fourth-order polynomial is commonly used), $n$ is the outward directed boundary normal, and $M$ is a scalar parameter. ### Operator split form The Cahn-Hilliard equation is a fourth-order equation, so casting it in a weak form would result in the presence of second-order spatial derivatives, and the problem could not be solved using a standard Lagrange finite element basis. A solution is to rephrase the problem as two coupled second-order equations: $$ \begin{align} \frac{\partial c}{\partial t} - \nabla \cdot M \nabla\mu &= 0 \quad {\rm in} \ \Omega, \\ \mu - \frac{d f}{d c} + \lambda \nabla^{2}c &= 0 \quad {\rm in} \ \Omega. \end{align} $$ The unknown fields are now $c$ and $\mu$. The weak (variational) form of the problem reads: find $(c, \mu) \in V \times V$ such that $$ \begin{align} \int_{\Omega} \frac{\partial c}{\partial t} q \, {\rm d} x + \int_{\Omega} M \nabla\mu \cdot \nabla q \, {\rm d} x &= 0 \quad \forall \ q \in V, \\ \int_{\Omega} \mu v \, {\rm d} x - \int_{\Omega} \frac{d f}{d c} v \, {\rm d} x - \int_{\Omega} \lambda \nabla c \cdot \nabla v \, {\rm d} x &= 0 \quad \forall \ v \in V. \end{align} $$ ### Time discretisation Before being able to solve this problem, the time derivative must be dealt with. Apply the $\theta$-method to the mixed weak form of the equation: $$ \begin{align} \int_{\Omega} \frac{c_{n+1} - c_{n}}{dt} q \, {\rm d} x + \int_{\Omega} M \nabla \mu_{n+\theta} \cdot \nabla q \, {\rm d} x &= 0 \quad \forall \ q \in V \\ \int_{\Omega} \mu_{n+1} v \, {\rm d} x - \int_{\Omega} \frac{d f_{n+1}}{d c} v \, {\rm d} x - \int_{\Omega} \lambda \nabla c_{n+1} \cdot \nabla v \, {\rm d} x &= 0 \quad \forall \ v \in V \end{align} $$ where $dt = t_{n+1} - t_{n}$ and $\mu_{n+\theta} = (1-\theta) \mu_{n} + \theta \mu_{n+1}$. The task is: given $c_{n}$ and $\mu_{n}$, solve the above equation to find $c_{n+1}$ and $\mu_{n+1}$. ### Demo parameters The following domains, functions and time stepping parameters are used in this demo: - $\Omega = (0, 1) \times (0, 1)$ (unit square) - $f = 100 c^{2} (1-c)^{2}$ - $\lambda = 1 \times 10^{-2}$ - $M = 1$ - $dt = 5 \times 10^{-6}$ - $\theta = 0.5$ ## Implementation This demo is implemented in the {download}`demo_cahn-hilliard.py` file. ```python import os import numpy as np import ufl from dolfinx import log, plot from dolfinx.fem import Function, FunctionSpace from dolfinx.fem.petsc import NonlinearProblem from dolfinx.io import XDMFFile from dolfinx.mesh import CellType, create_unit_square from dolfinx.nls.petsc import NewtonSolver from ufl import dx, grad, inner from mpi4py import MPI from petsc4py import PETSc try: import pyvista as pv import pyvistaqt as pvqt have_pyvista = True if pv.OFF_SCREEN: pv.start_xvfb(wait=0.5) except ModuleNotFoundError: print("pyvista and pyvistaqt are required to visualise the solution") have_pyvista = False # Save all logging to file log.set_output_file("log.txt") ``` Next, various model parameters are defined: ```python lmbda = 1.0e-02 # surface parameter dt = 5.0e-06 # time step theta = 0.5 # time stepping family, e.g. theta=1 -> backward Euler, theta=0.5 -> Crank-Nicholson ``` A unit square mesh with 96 cells edges in each direction is created, and on this mesh a {py:class}`FunctionSpace` `ME` is built using a pair of linear Lagrange elements. ```python msh = create_unit_square(MPI.COMM_WORLD, 96, 96, CellType.triangle) P1 = ufl.FiniteElement("Lagrange", msh.ufl_cell(), 1) ME = FunctionSpace(msh, P1 * P1) ``` Trial and test functions of the space `ME` are now defined: ```python q, v = ufl.TestFunctions(ME) ``` ```{index} split functions ``` For the test functions, {py:func}`TestFunctions` (note the 's' at the end) is used to define the scalar test functions `q` and `v`. Some mixed objects of the {py:class}`Function` class on `ME` are defined to represent $u = (c_{n+1}, \mu_{n+1})$ and $u0 = (c_{n}, \mu_{n})$, and these are then split into sub-functions: ```python u = Function(ME) # current solution u0 = Function(ME) # solution from previous converged step # Split mixed functions c, mu = ufl.split(u) c0, mu0 = ufl.split(u0) ``` The line `c, mu = ufl.split(u)` permits direct access to the components of a mixed function. Note that `c` and `mu` are references for components of `u`, and not copies. ```{index} single: interpolating functions; (in Cahn-Hilliard demo) ``` The initial conditions are interpolated into a finite element space: ```python # Zero u u.x.array[:] = 0.0 # Interpolate initial condition u.sub(0).interpolate(lambda x: 0.63 + 0.02 * (0.5 - np.random.rand(x.shape[1]))) u.x.scatter_forward() ``` The first line creates an object of type `InitialConditions`. The following two lines make `u` and `u0` interpolants of `u_init` (since `u` and `u0` are finite element functions, they may not be able to represent a given function exactly, but the function can be approximated by interpolating it in a finite element space). ```{index} automatic differentiation ``` The chemical potential $df/dc$ is computed using UFL automatic differentiation: ```python # Compute the chemical potential df/dc c = ufl.variable(c) f = 100 * c**2 * (1 - c)**2 dfdc = ufl.diff(f, c) ``` The first line declares that `c` is a variable that some function can be differentiated with respect to. The next line is the function $f$ defined in the problem statement, and the third line performs the differentiation of `f` with respect to the variable `c`. It is convenient to introduce an expression for $\mu_{n+\theta}$: ```python # mu_(n+theta) mu_mid = (1.0 - theta) * mu0 + theta * mu ``` which is then used in the definition of the variational forms: ```python # Weak statement of the equations F0 = inner(c, q) * dx - inner(c0, q) * dx + dt * inner(grad(mu_mid), grad(q)) * dx F1 = inner(mu, v) * dx - inner(dfdc, v) * dx - lmbda * inner(grad(c), grad(v)) * dx F = F0 + F1 ``` This is a statement of the time-discrete equations presented as part of the problem statement, using UFL syntax. ```{index} single: Newton solver; (in Cahn-Hilliard demo) ``` The DOLFINx Newton solver requires a {py:class}`NonlinearProblem` object to solve a system of nonlinear equations ```python # Create nonlinear problem and Newton solver problem = NonlinearProblem(F, u) solver = NewtonSolver(MPI.COMM_WORLD, problem) solver.convergence_criterion = "incremental" solver.rtol = 1e-6 # We can customize the linear solver used inside the NewtonSolver by # modifying the PETSc options ksp = solver.krylov_solver opts = PETSc.Options() option_prefix = ksp.getOptionsPrefix() opts[f"{option_prefix}ksp_type"] = "preonly" opts[f"{option_prefix}pc_type"] = "lu" opts[f"{option_prefix}pc_factor_mat_solver_type"] = "mumps" ksp.setFromOptions() ``` The setting of `convergence_criterion` to `"incremental"` specifies that the Newton solver should compute a norm of the solution increment to check for convergence (the other possibility is to use `"residual"`, or to provide a user-defined check). The tolerance for convergence is specified by `rtol`. To run the solver and save the output to a VTK file for later visualization, the solver is advanced in time from $t_{n}$ to $t_{n+1}$ until a terminal time $T$ is reached: ```python # Output file file = XDMFFile(MPI.COMM_WORLD, "demo_ch/output.xdmf", "w") file.write_mesh(msh) # Step in time t = 0.0 # Reduce run time if on test (CI) server if "CI" in os.environ.keys() or "GITHUB_ACTIONS" in os.environ.keys(): T = 3 * dt else: T = 50 * dt # Get the sub-space for c and the corresponding dofs in the mixed space # vector V0, dofs = ME.sub(0).collapse() # Prepare viewer for plotting the solution during the computation if have_pyvista: # Create a VTK 'mesh' with 'nodes' at the function dofs topology, cell_types, x = plot.create_vtk_mesh(V0) grid = pv.UnstructuredGrid(topology, cell_types, x) # Set output data grid.point_data["c"] = u.x.array[dofs].real grid.set_active_scalars("c") p = pvqt.BackgroundPlotter(title="concentration", auto_update=True) p.add_mesh(grid, clim=[0, 1]) p.view_xy(True) p.add_text(f"time: {t}", font_size=12, name="timelabel") c = u.sub(0) u0.x.array[:] = u.x.array while (t < T): t += dt r = solver.solve(u) print(f"Step {int(t/dt)}: num iterations: {r[0]}") u0.x.array[:] = u.x.array file.write_function(c, t) # Update the plot window if have_pyvista: p.add_text(f"time: {t:.2e}", font_size=12, name="timelabel") grid.point_data["c"] = u.x.array[dofs].real p.app.processEvents() file.close() # Update ghost entries and plot if have_pyvista: u.x.scatter_forward() grid.point_data["c"] = u.x.array[dofs].real screenshot = None if pv.OFF_SCREEN: screenshot = "c.png" pv.plot(grid, show_edges=True, screenshot=screenshot) ```