Solving PDEs with different scalar (float) types
This demo shows
How to solve problems using different scalar types, .e.g. single or double precision, or complex numbers
Interfacing with SciPy sparse linear algebra functionality
import numpy as np
import scipy.sparse
import scipy.sparse.linalg
import ufl
from dolfinx import common, fem, mesh, plot
from mpi4py import MPI
SciPy solvers do no support MPI, so all computations are performed on a single MPI rank
comm = MPI.COMM_SELF
Create a mesh and function space
msh = mesh.create_rectangle(comm=comm, points=((0.0, 0.0), (2.0, 1.0)), n=(32, 16),
cell_type=mesh.CellType.triangle)
V = fem.FunctionSpace(msh, ("Lagrange", 1))
# Define a variartional problem
u, v = ufl.TrialFunction(V), ufl.TestFunction(V)
x = ufl.SpatialCoordinate(msh)
fr = 10 * ufl.exp(-((x[0] - 0.5) ** 2 + (x[1] - 0.5) ** 2) / 0.02)
fc = ufl.sin(2 * np.pi * x[0]) + 10 * ufl.sin(4 * np.pi * x[1]) * 1j
gr = ufl.sin(5 * x[0])
gc = ufl.sin(5 * x[0]) * 1j
a = ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
L = ufl.inner(fr + fc, v) * ufl.dx + ufl.inner(gr + gc, v) * ufl.ds
# In preparation for constructing Dirichlet boundary conditions, locate
# facets on the constrained boundary and the corresponding
# degrees-of-freedom
facets = mesh.locate_entities_boundary(msh, dim=1,
marker=lambda x: np.logical_or(np.isclose(x[0], 0.0),
np.isclose(x[0], 2.0)))
dofs = fem.locate_dofs_topological(V=V, entity_dim=1, entities=facets)
def solve(dtype=np.float32):
"""Solve the variational problem"""
# Process forms. This will compile the forms for the requested type.
a0 = fem.form(a, dtype=dtype)
if np.issubdtype(dtype, np.complexfloating):
L0 = fem.form(L, dtype=dtype)
else:
L0 = fem.form(ufl.replace(L, {fc: 0, gc: 0}), dtype=dtype)
# Create a Dirichlet boundary condition
bc = fem.dirichletbc(value=dtype(0), dofs=dofs, V=V)
# Assemble forms
A = fem.assemble_matrix(a0, [bc])
A.finalize()
b = fem.assemble_vector(L0)
fem.apply_lifting(b.array, [a0], bcs=[[bc]])
b.scatter_reverse(common.ScatterMode.add)
fem.set_bc(b.array, [bc])
# Create a Scipy sparse matrix that shares data with A
As = scipy.sparse.csr_matrix((A.data, A.indices, A.indptr))
# Solve the variational problem and return the solution
uh = fem.Function(V, dtype=dtype)
uh.x.array[:] = scipy.sparse.linalg.spsolve(As, b.array)
return uh
def display(u, filter=np.real):
"""Plot the solution using pyvista"""
try:
import pyvista
cells, types, x = plot.create_vtk_mesh(V)
grid = pyvista.UnstructuredGrid(cells, types, x)
grid.point_data["u"] = filter(u.x.array)
grid.set_active_scalars("u")
plotter = pyvista.Plotter()
plotter.add_mesh(grid, show_edges=True)
plotter.add_mesh(grid.warp_by_scalar())
plotter.add_title("real" if filter is np.real else "imag")
plotter.show()
except ModuleNotFoundError:
print("'pyvista' is required to visualise the solution")
# Solve the variational problem using different scalar types
uh = solve(dtype=np.float32)
uh = solve(dtype=np.float64)
uh = solve(dtype=np.complex128)
# Display the last computed solution
display(uh, np.real)
display(uh, np.imag)