Mesh generation using GMSH python API¶
Copyright (C) 2020 Garth N. Wells and Jørgen S. Dokken
import numpy as np
from dolfinx import cpp
from dolfinx.cpp.io import extract_local_entities, perm_gmsh
from dolfinx.io import (XDMFFile, extract_gmsh_geometry,
extract_gmsh_topology_and_markers, ufl_mesh_from_gmsh)
from dolfinx.mesh import create_mesh, create_meshtags
from mpi4py import MPI
import gmsh
Generate a mesh on each rank with the gmsh API, and create a DOLFINx mesh on each rank.
gmsh.initialize()
gmsh.option.setNumber("General.Terminal", 0)
model = gmsh.model()
model.add("Sphere")
model.setCurrent("Sphere")
model.occ.addSphere(0, 0, 0, 1, tag=1)
# Generate mesh
model.occ.synchronize()
model.mesh.generate(3)
# Sort mesh nodes according to their index in gmsh (Starts at 1)
x = extract_gmsh_geometry(model, model_name="Sphere")
# Extract cells from gmsh (Only interested in tetrahedrons)
element_types, element_tags, node_tags = model.mesh.getElements(dim=3)
assert len(element_types) == 1
name, dim, order, num_nodes, local_coords, num_first_order_nodes = model.mesh.getElementProperties(element_types[0])
cells = node_tags[0].reshape(-1, num_nodes) - 1
mesh = create_mesh(MPI.COMM_SELF, cells, x, ufl_mesh_from_gmsh(element_types[0], x.shape[1]))
with XDMFFile(MPI.COMM_SELF, "mesh_rank_{}.xdmf".format(MPI.COMM_WORLD.rank), "w") as file:
file.write_mesh(mesh)
Create a distributed (parallel) mesh with affine geometry. Generate mesh on rank 0, then build a distributed mesh
if MPI.COMM_WORLD.rank == 0:
# Generate a mesh
model.add("Sphere minus box")
model.setCurrent("Sphere minus box")
sphere_dim_tags = model.occ.addSphere(0, 0, 0, 1)
box_dim_tags = model.occ.addBox(0, 0, 0, 1, 1, 1)
model_dim_tags = model.occ.cut([(3, sphere_dim_tags)], [(3, box_dim_tags)])
model.occ.synchronize()
# Add physical tag 1 for exterior surfaces
boundary = model.getBoundary(model_dim_tags[0])
boundary_ids = [b[1] for b in boundary]
model.addPhysicalGroup(2, boundary_ids, tag=1)
model.setPhysicalName(2, 1, "Sphere surface")
# Add physical tag 2 for the volume
volume_entities = [model[1] for model in model.getEntities(3)]
model.addPhysicalGroup(3, volume_entities, tag=2)
model.setPhysicalName(3, 2, "Sphere volume")
model.mesh.generate(3)
# Sort mesh nodes according to their index in gmsh
x = extract_gmsh_geometry(model, model_name="Sphere minus box")
# Broadcast cell type data and geometric dimension
gmsh_cell_id = MPI.COMM_WORLD.bcast(model.mesh.getElementType("tetrahedron", 1), root=0)
# Get mesh data for dim (0, tdim) for all physical entities
topologies = extract_gmsh_topology_and_markers(model, "Sphere minus box")
cells = topologies[gmsh_cell_id]["topology"]
cell_data = topologies[gmsh_cell_id]["cell_data"]
num_nodes = MPI.COMM_WORLD.bcast(cells.shape[1], root=0)
gmsh_facet_id = model.mesh.getElementType("triangle", 1)
marked_facets = topologies[gmsh_facet_id]["topology"].astype(np.int64)
facet_values = topologies[gmsh_facet_id]["cell_data"].astype(np.int32)
else:
gmsh_cell_id = MPI.COMM_WORLD.bcast(None, root=0)
num_nodes = MPI.COMM_WORLD.bcast(None, root=0)
cells, x = np.empty([0, num_nodes]), np.empty([0, 3])
marked_facets, facet_values = np.empty((0, 3), dtype=np.int64), np.empty((0,), dtype=np.int32)
mesh = create_mesh(MPI.COMM_WORLD, cells, x, ufl_mesh_from_gmsh(gmsh_cell_id, 3))
mesh.name = "ball_d1"
local_entities, local_values = extract_local_entities(mesh, 2, marked_facets, facet_values)
mesh.topology.create_connectivity(2, 0)
mt = create_meshtags(mesh, 2, cpp.graph.AdjacencyList_int32(local_entities), np.int32(local_values))
mt.name = "ball_d1_surface"
with XDMFFile(MPI.COMM_WORLD, "mesh.xdmf", "w") as file:
file.write_mesh(mesh)
mesh.topology.create_connectivity(2, 3)
file.write_meshtags(mt, geometry_xpath="/Xdmf/Domain/Grid[@Name='ball_d1']/Geometry")
Create a distributed (parallel) mesh with quadratic geometry. Generate mesh on rank 0, then build a distributed mesh.
if MPI.COMM_WORLD.rank == 0:
# Using model.setCurrent(model_name) lets you change between models
model.setCurrent("Sphere minus box")
# Generate second order mesh and output gmsh messages to terminal
model.mesh.generate(3)
gmsh.option.setNumber("General.Terminal", 1)
model.mesh.setOrder(2)
gmsh.option.setNumber("General.Terminal", 0)
# Sort mesh nodes according to their index in gmsh
x = extract_gmsh_geometry(model, model.getCurrent())
# Broadcast cell type data and geometric dimension
gmsh_cell_id = MPI.COMM_WORLD.bcast(model.mesh.getElementType("tetrahedron", 2), root=0)
# Get mesh data for dim (0, tdim) for all physical entities
topologies = extract_gmsh_topology_and_markers(model, model.getCurrent())
cells = topologies[gmsh_cell_id]["topology"]
cell_data = topologies[gmsh_cell_id]["cell_data"]
num_nodes = MPI.COMM_WORLD.bcast(cells.shape[1], root=0)
gmsh_facet_id = model.mesh.getElementType("triangle", 2)
marked_facets = topologies[gmsh_facet_id]["topology"].astype(np.int64)
facet_values = topologies[gmsh_facet_id]["cell_data"].astype(np.int32)
else:
gmsh_cell_id = MPI.COMM_WORLD.bcast(None, root=0)
num_nodes = MPI.COMM_WORLD.bcast(None, root=0)
cells, x = np.empty([0, num_nodes]), np.empty([0, 3])
marked_facets, facet_values = np.empty((0, 6)).astype(np.int64), np.empty((0,)).astype(np.int32)
# Permute the topology from GMSH to DOLFINx ordering
domain = ufl_mesh_from_gmsh(gmsh_cell_id, 3)
gmsh_tetra10 = perm_gmsh(cpp.mesh.CellType.tetrahedron, 10)
cells = cells[:, gmsh_tetra10]
mesh = create_mesh(MPI.COMM_WORLD, cells, x, domain)
mesh.name = "ball_d2"
# Permute also entities which are tagged
gmsh_triangle6 = perm_gmsh(cpp.mesh.CellType.triangle, 6)
marked_facets = marked_facets[:, gmsh_triangle6]
local_entities, local_values = extract_local_entities(mesh, 2, marked_facets, facet_values)
mesh.topology.create_connectivity(2, 0)
mt = create_meshtags(mesh, 2, cpp.graph.AdjacencyList_int32(local_entities), np.int32(local_values))
mt.name = "ball_d2_surface"
with XDMFFile(MPI.COMM_WORLD, "mesh.xdmf", "a") as file:
file.write_mesh(mesh)
mesh.topology.create_connectivity(2, 3)
file.write_meshtags(mt, geometry_xpath="/Xdmf/Domain/Grid[@Name='ball_d2']/Geometry")
if MPI.COMM_WORLD.rank == 0:
# Generate a mesh with 2nd-order hexahedral cells using gmsh
model.add("Hexahedral mesh")
model.setCurrent("Hexahedral mesh")
# Recombine tetrahedrons to hexahedrons
gmsh.option.setNumber("Mesh.RecombinationAlgorithm", 2)
gmsh.option.setNumber("Mesh.RecombineAll", 2)
gmsh.option.setNumber("Mesh.CharacteristicLengthFactor", 1)
circle = model.occ.addDisk(0, 0, 0, 1, 1)
circle_inner = model.occ.addDisk(0, 0, 0, 0.5, 0.5)
cut = model.occ.cut([(2, circle)], [(2, circle_inner)])[0]
extruded_geometry = model.occ.extrude(cut, 0, 0, 0.5, numElements=[5], recombine=True)
model.occ.synchronize()
model.addPhysicalGroup(2, [cut[0][1]], tag=1)
model.setPhysicalName(2, 1, "2D cylinder")
boundary_entities = model.getEntities(2)
other_boundary_entities = []
for entity in boundary_entities:
if entity != cut[0][1]:
other_boundary_entities.append(entity[1])
model.addPhysicalGroup(2, other_boundary_entities, tag=3)
model.setPhysicalName(2, 3, "Remaining boundaries")
model.mesh.generate(3)
model.mesh.setOrder(2)
volume_entities = []
for entity in extruded_geometry:
if entity[0] == 3:
volume_entities.append(entity[1])
model.addPhysicalGroup(3, volume_entities, tag=1)
model.setPhysicalName(3, 1, "Mesh volume")
# Sort mesh nodes according to their index in gmsh
x = extract_gmsh_geometry(model, model.getCurrent())
# Broadcast cell type data and geometric dimension
gmsh_cell_id = MPI.COMM_WORLD.bcast(model.mesh.getElementType("hexahedron", 2), root=0)
# Get mesh data for dim (0, tdim) for all physical entities
topologies = extract_gmsh_topology_and_markers(model, model.getCurrent())
cells = topologies[gmsh_cell_id]["topology"]
cell_data = topologies[gmsh_cell_id]["cell_data"]
num_nodes = MPI.COMM_WORLD.bcast(cells.shape[1], root=0)
gmsh_facet_id = model.mesh.getElementType("quadrangle", 2)
marked_facets = topologies[gmsh_facet_id]["topology"].astype(np.int64)
facet_values = topologies[gmsh_facet_id]["cell_data"].astype(np.int32)
gmsh.finalize()
else:
gmsh_cell_id = MPI.COMM_WORLD.bcast(None, root=0)
num_nodes = MPI.COMM_WORLD.bcast(None, root=0)
cells, x = np.empty([0, num_nodes]), np.empty([0, 3])
marked_facets, facet_values = np.empty((0, 6)).astype(np.int64), np.empty((0,)).astype(np.int32)
# Permute the mesh topology from GMSH ordering to DOLFINx ordering
domain = ufl_mesh_from_gmsh(gmsh_cell_id, 3)
gmsh_hex27 = perm_gmsh(cpp.mesh.CellType.hexahedron, 27)
cells = cells[:, gmsh_hex27]
mesh = create_mesh(MPI.COMM_WORLD, cells, x, domain)
mesh.name = "hex_d2"
# Permute also entities which are tagged
gmsh_quad9 = perm_gmsh(cpp.mesh.CellType.quadrilateral, 9)
marked_facets = marked_facets[:, gmsh_quad9]
local_entities, local_values = extract_local_entities(mesh, 2, marked_facets, facet_values)
mesh.topology.create_connectivity(2, 0)
mt = create_meshtags(mesh, 2, cpp.graph.AdjacencyList_int32(local_entities), np.int32(local_values))
mt.name = "hex_d2_surface"
with XDMFFile(MPI.COMM_WORLD, "mesh.xdmf", "a") as file:
file.write_mesh(mesh)
mesh.topology.create_connectivity(2, 3)
file.write_meshtags(mt, geometry_xpath="/Xdmf/Domain/Grid[@Name='hex_d2']/Geometry")