9 #include "FunctionSpace.h"
10 #include <dolfinx/fem/DofMap.h>
11 #include <dolfinx/fem/FiniteElement.h>
12 #include <dolfinx/mesh/Mesh.h>
15 #include <xtensor/xadapt.hpp>
16 #include <xtensor/xarray.hpp>
17 #include <xtensor/xtensor.hpp>
18 #include <xtensor/xview.hpp>
19 #include <xtl/xspan.hpp>
37 xt::xtensor<double, 2>
39 const xtl::span<const std::int32_t>& cells);
46 void interpolate(Function<T>& u,
const Function<T>& v);
62 const std::function<xt::xarray<T>(
const xt::xtensor<double, 2>&)>& f,
63 const xt::xtensor<double, 2>& x,
64 const xtl::span<const std::int32_t>& cells);
85 const std::function<
void(xt::xarray<T>&,
const xt::xtensor<double, 2>&)>& f,
86 const xt::xtensor<double, 2>& x,
87 const xtl::span<const std::int32_t>& cells);
93 void interpolate_from_any(Function<T>& u,
const Function<T>& v)
95 assert(v.function_space());
96 const auto element = u.function_space()->element();
98 if (v.function_space()->element()->hash() != element->hash())
100 throw std::runtime_error(
"Restricting finite elements function in "
101 "different elements not supported.");
104 const auto mesh = u.function_space()->mesh();
106 assert(v.function_space()->mesh());
107 if (mesh->id() != v.function_space()->mesh()->id())
109 throw std::runtime_error(
110 "Interpolation on different meshes not supported (yet).");
112 const int tdim = mesh->topology().dim();
115 assert(v.function_space());
116 std::shared_ptr<const fem::DofMap> dofmap_v = v.function_space()->dofmap();
118 auto map = mesh->topology().index_map(tdim);
121 std::vector<T>& coeffs = u.x()->mutable_array();
124 const auto dofmap_u = u.function_space()->dofmap();
125 const std::vector<T>& v_array = v.x()->array();
126 const int num_cells = map->size_local() + map->num_ghosts();
127 const int bs = dofmap_v->bs();
128 assert(bs == dofmap_u->bs());
129 for (
int c = 0; c < num_cells; ++c)
131 xtl::span<const std::int32_t> dofs_v = dofmap_v->cell_dofs(c);
132 xtl::span<const std::int32_t> cell_dofs = dofmap_u->cell_dofs(c);
133 assert(dofs_v.size() == cell_dofs.size());
134 for (std::size_t i = 0; i < dofs_v.size(); ++i)
136 for (
int k = 0; k < bs; ++k)
137 coeffs[bs * cell_dofs[i] + k] = v_array[bs * dofs_v[i] + k];
145 template <
typename T>
149 const std::shared_ptr<const FiniteElement> element
155 element->value_rank() != rank_v)
157 throw std::runtime_error(
"Cannot interpolate function into function space. "
159 + std::to_string(rank_v)
160 +
") does not match rank of function space ("
161 + std::to_string(element->value_rank()) +
")");
165 for (
int i = 0; i < element->value_rank(); ++i)
167 if (
int v_dim = v.
function_space()->element()->value_dimension(i);
168 element->value_dimension(i) != v_dim)
170 throw std::runtime_error(
171 "Cannot interpolate function into function space. "
173 + std::to_string(i) +
" of function (" + std::to_string(v_dim)
174 +
") does not match dimension " + std::to_string(i)
175 +
" of function space(" + std::to_string(element->value_dimension(i))
180 detail::interpolate_from_any(u, v);
183 template <
typename T>
186 const std::function<xt::xarray<T>(
const xt::xtensor<double, 2>&)>& f,
187 const xt::xtensor<double, 2>& x,
const xtl::span<const std::int32_t>& cells)
189 const std::shared_ptr<const FiniteElement> element
192 const int element_bs = element->block_size();
193 if (
int num_sub = element->num_sub_elements();
194 num_sub > 0 and num_sub != element_bs)
196 throw std::runtime_error(
"Cannot directly interpolate a mixed space. "
197 "Interpolate into subspaces.");
205 const int gdim = mesh->geometry().dim();
206 const int tdim = mesh->topology().dim();
209 const xt::xtensor<double, 2>& X = element->interpolation_points();
213 throw std::runtime_error(
214 "Interpolation into this space is not yet supported.");
217 xtl::span<const std::uint32_t> cell_info;
218 if (element->needs_dof_transformations())
220 mesh->topology_mutable().create_entity_permutations();
221 cell_info = xtl::span(mesh->topology().get_cell_permutation_info());
228 xt::xarray<T> values = f(x);
230 if (values.dimension() == 1)
232 if (element->value_size() != 1)
233 throw std::runtime_error(
"Interpolation data has the wrong shape.");
235 {
static_cast<std::size_t
>(element->value_size()), x.shape(1)});
238 if (values.shape(0) != element->value_size())
239 throw std::runtime_error(
"Interpolation data has the wrong shape.");
241 if (values.shape(1) != cells.size() * X.shape(0))
242 throw std::runtime_error(
"Interpolation data has the wrong shape.");
247 const int dofmap_bs = dofmap->bs();
250 const int num_scalar_dofs = element->space_dimension() / element_bs;
251 const int value_size = element->value_size() / element_bs;
253 std::vector<T>& coeffs = u.
x()->mutable_array();
254 std::vector<T> _coeffs(num_scalar_dofs);
256 const std::function<void(
const xtl::span<T>&,
257 const xtl::span<const std::uint32_t>&, std::int32_t,
259 apply_inverse_transpose_dof_transformation
260 = element->get_dof_transformation_function<T>(
true,
true,
true);
264 if (element->interpolation_ident())
266 for (std::int32_t c : cells)
268 xtl::span<const std::int32_t> dofs = dofmap->cell_dofs(c);
269 for (
int k = 0; k < element_bs; ++k)
271 for (
int i = 0; i < num_scalar_dofs; ++i)
272 _coeffs[i] = values(k, c * num_scalar_dofs + i);
273 apply_inverse_transpose_dof_transformation(_coeffs, cell_info, c, 1);
274 for (
int i = 0; i < num_scalar_dofs; ++i)
276 const int dof = i * element_bs + k;
277 std::div_t pos = std::div(dof, dofmap_bs);
278 coeffs[dofmap_bs * dofs[pos.quot] + pos.rem] = _coeffs[i];
290 = mesh->geometry().dofmap();
292 const int num_dofs_g = x_dofmap.
num_links(0);
293 const xt::xtensor<double, 2>& x_g = mesh->geometry().x();
296 xt::xtensor<double, 3> J = xt::empty<double>({int(X.shape(0)), gdim, tdim});
297 xt::xtensor<double, 3> K = xt::empty<double>({int(X.shape(0)), tdim, gdim});
298 xt::xtensor<double, 1> detJ = xt::empty<double>({X.shape(0)});
300 xt::xtensor<double, 2> coordinate_dofs
301 = xt::empty<double>({num_dofs_g, gdim});
303 xt::xtensor<T, 3> reference_data({X.shape(0), 1, value_size});
304 xt::xtensor<T, 3> _vals({X.shape(0), 1, value_size});
307 xt::xtensor<double, 4> dphi
308 = xt::view(cmap.
tabulate(1, X), xt::range(1, tdim + 1), xt::all(),
309 xt::all(), xt::all());
311 const std::function<void(
const xtl::span<T>&,
312 const xtl::span<const std::uint32_t>&,
314 apply_inverse_transpose_dof_transformation
315 = element->get_dof_transformation_function<T>(
true,
true);
317 for (std::int32_t c : cells)
319 auto x_dofs = x_dofmap.
links(c);
320 for (
int i = 0; i < num_dofs_g; ++i)
321 for (
int j = 0; j < gdim; ++j)
322 coordinate_dofs(i, j) = x_g(x_dofs[i], j);
329 xtl::span<const std::int32_t> dofs = dofmap->cell_dofs(c);
330 for (
int k = 0; k < element_bs; ++k)
333 for (
int m = 0; m < value_size; ++m)
335 std::copy_n(&values(k * value_size + m, c * X.shape(0)), X.shape(0),
336 xt::view(_vals, xt::all(), 0, m).begin());
340 element->map_pull_back(_vals, J, detJ, K, reference_data);
342 xt::xtensor<T, 2> ref_data
343 = xt::transpose(xt::view(reference_data, xt::all(), 0, xt::all()));
344 element->interpolate(ref_data, tcb::make_span(_coeffs));
345 apply_inverse_transpose_dof_transformation(_coeffs, cell_info, c, 1);
347 assert(_coeffs.size() == num_scalar_dofs);
350 for (
int i = 0; i < num_scalar_dofs; ++i)
352 const int dof = i * element_bs + k;
353 std::div_t pos = std::div(dof, dofmap_bs);
354 coeffs[dofmap_bs * dofs[pos.quot] + pos.rem] = _coeffs[i];
361 template <
typename T>
364 const std::function<
void(xt::xarray<T>&,
const xt::xtensor<double, 2>&)>& f,
365 const xt::xtensor<double, 2>& x,
const xtl::span<const std::int32_t>& cells)
367 const std::shared_ptr<const FiniteElement> element
370 std::vector<int> vshape(element->value_rank(), 1);
371 for (std::size_t i = 0; i < vshape.size(); ++i)
372 vshape[i] = element->value_dimension(i);
373 const std::size_t value_size = std::reduce(
374 std::begin(vshape), std::end(vshape), 1, std::multiplies<>());
376 auto fn = [value_size, &f](
const xt::xtensor<double, 2>& x)
378 xt::xarray<T> values = xt::empty<T>({value_size, x.shape(1)});
383 interpolate<T>(u, fn, x, cells);
This class manages coordinate mappings for isoparametric cells.
Definition: CoordinateElement.h:29
void compute_jacobian(const xt::xtensor< double, 4 > &dphi, const xt::xtensor< double, 2 > &cell_geometry, xt::xtensor< double, 3 > &J) const
Compute Jacobian for a cell with given geometry using the basis functions and first order derivatives...
Definition: CoordinateElement.cpp:84
void compute_jacobian_inverse(const xt::xtensor< double, 3 > &J, xt::xtensor< double, 3 > &K) const
Compute the inverse of the Jacobian. If the coordinate element is affine, it computes the inverse at ...
Definition: CoordinateElement.cpp:125
void compute_jacobian_determinant(const xt::xtensor< double, 3 > &J, xt::xtensor< double, 1 > &detJ) const
Compute the determinant of the Jacobian. If the coordinate element is affine, it computes the determi...
Definition: CoordinateElement.cpp:162
xt::xtensor< double, 4 > tabulate(int n, const xt::xtensor< double, 2 > &X) const
Compute basis values and derivatives at set of points.
Definition: CoordinateElement.cpp:79
This class represents a function in a finite element function space , given by.
Definition: Function.h:47
std::shared_ptr< const FunctionSpace > function_space() const
Return shared pointer to function space.
Definition: Function.h:155
std::shared_ptr< const la::Vector< T > > x() const
Underlying vector.
Definition: Function.h:195
This class provides a static adjacency list data structure. It is commonly used to store directed gra...
Definition: AdjacencyList.h:47
xtl::span< T > links(int node)
Get the links (edges) for given node.
Definition: AdjacencyList.h:130
int num_links(int node) const
Number of connections for given node.
Definition: AdjacencyList.h:120
Finite element method functionality.
Definition: assemble_matrix_impl.h:23
void interpolate_c(Function< T > &u, const std::function< void(xt::xarray< T > &, const xt::xtensor< double, 2 > &)> &f, const xt::xtensor< double, 2 > &x, const xtl::span< const std::int32_t > &cells)
Interpolate an expression f(x)
Definition: interpolate.h:362
void interpolate(Function< T > &u, const Function< T > &v)
Interpolate a finite element Function (on possibly non-matching meshes) in another finite element spa...
Definition: interpolate.h:146
xt::xtensor< double, 2 > interpolation_coords(const fem::FiniteElement &element, const mesh::Mesh &mesh, const xtl::span< const std::int32_t > &cells)
Compute the evaluation points in the physical space at which an expression should be computed to inte...
Definition: interpolate.cpp:18