--- jupytext: text_representation: extension: .md format_name: myst format_version: 0.13 jupytext_version: 1.18.1 main_language: python --- # Divergence conforming discontinuous Galerkin method for the Navier--Stokes equations # noqa ```{admonition} Download sources :class: download * {download}`Python script <./demo_navier-stokes.py>` * {download}`Jupyter notebook <./demo_navier-stokes.ipynb>` ``` This demo illustrates how to: - Implement a divergence conforming discontinuous Galerkin method for the Navier-Stokes equations. - Tune MUMPS to support singular systems. discontinuous Galerkin method for the Navier-Stokes equations. The method conserves mass exactly and uses upwinding. The formulation is based on a combination of [A fully divergence-free finite element method for magnetohydrodynamic equations]( https://doi.org/10.1142/S0218202518500173) by Hiptmair et al., [A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier-Stokes Equations](https://doi.org/10.1007/s10915-006-9107-7) by Cockburn et al, and [On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows](https://doi.org/10.1137/15M1047696) by John et al. ## Governing equations We consider the incompressible Navier-Stokes equations in a domain $\Omega \subset \mathbb{R}^d$, $d \in \{2, 3\}$, and time interval $(0, \infty)$, given by $$ \begin{align} \partial_t u - \nu \Delta u + (u \cdot \nabla)u + \nabla p &= f \text{ in } \Omega_t, \\ \nabla \cdot u &= 0 \text{ in } \Omega_t, \end{align} $$ where $u: \Omega_t \to \mathbb{R}^d$ is the velocity field, $p: \Omega_t \to \mathbb{R}$ is the pressure field, $f: \Omega_t \to \mathbb{R}^d$ is a prescribed force, $\nu \in \mathbb{R}^+$ is the kinematic viscosity, and $\Omega_t := \Omega \times (0, \infty)$. The problem is supplemented with the initial condition $$ u(x, 0) = u_0(x) \text{ in } \Omega $$ and boundary condition $$ u = u_D \text{ on } \partial \Omega \times (0, \infty), $$ where $u_0: \Omega \to \mathbb{R}^d$ is a prescribed initial velocity field which satisfies the divergence free condition. The pressure field is only determined up to a constant, so we seek the unique pressure field satisfying $$ \int_\Omega p = 0. $$ ## Discrete problem We begin by introducing the function spaces $$ \begin{align} V_h^g &:= \left\{v \in H(\text{div}; \Omega); v|_K \in V_h(K) \; \forall K \in \mathcal{T}, v \cdot n = g \cdot n \text{ on } \partial \Omega \right\} \\ Q_h &:= \left\{q \in L^2_0(\Omega); q|_K \in Q_h(K) \; \forall K \in \mathcal{T} \right\}. \end{align} $$ The local spaces $V_h(K)$ and $Q_h(K)$ should satisfy $$ \nabla \cdot V_h(K) \subseteq Q_h(K), $$ in order for mass to be conserved exactly. Suitable choices on affine simplex cells include $$ V_h(K) := \mathbb{RT}_k(K) \text{ and } Q_h(K) := \mathbb{P}_k(K), $$ or $$ V_h(K) := \mathbb{BDM}_k(K) \text{ and } Q_h(K) := \mathbb{P}_{k-1}(K). $$ Let two cells $K^+$ and $K^-$ share a facet $F$. The trace of a piecewise smooth vector valued function $\phi$ on F taken approaching from inside $K^+$ (resp. $K^-$) is denoted $\phi^{+}$ (resp. $\phi^-$). We now introduce the average $\renewcommand{\avg}[1]{\left\{\!\!\left\{#1\right\}\!\!\right\}}$ $$ \avg{\phi} = \frac{1}{2} \left(\phi^+ + \phi^-\right) $$ and jump $\renewcommand{\jump}[1]{[\![ #1 ]\!]}$ $$ \jump{\phi} = \phi^+ \otimes n^+ + \phi^- \otimes n^-, $$ operators, where $n$ denotes the outward unit normal to $\partial K$. Finally, let the upwind flux of $\phi$ with respect to a vector field $\psi$ be defined as $$ \hat{\phi}^\psi := \begin{cases} \lim_{\epsilon \downarrow 0} \phi(x - \epsilon \psi(x)), \; x \in \partial K \setminus \Gamma^\psi, \\ 0, \qquad \qquad \qquad \qquad x \in \partial K \cap \Gamma^\psi, \end{cases} $$ where $\Gamma^\psi = \left\{x \in \Gamma; \; \psi(x) \cdot n(x) < 0 \right\}$. The semi-discrete version problem (in dimensionless form) is: find $(u_h, p_h) \in V_h^{u_D} \times Q_h$ such that $$ \begin{align} \int_\Omega \partial_t u_h \cdot v + a_h(u_h, v_h) + c_h(u_h; u_h, v_h) + b_h(v_h, p_h) &= \int_\Omega f \cdot v_h + L_{a_h}(v_h) + L_{c_h}(v_h) \quad \forall v_h \in V_h^0, \\ b_h(u_h, q_h) &= 0 \quad \forall q_h \in Q_h, \end{align} $$ where $\renewcommand{\sumK}[0]{\sum_{K \in \mathcal{T}_h}}$ $\renewcommand{\sumF}[0]{\sum_{F \in \mathcal{F}_h}}$ $$ \begin{align} a_h(u, v) &= Re^{-1} \left(\sumK \int_K \nabla u : \nabla v - \sumF \int_F \avg{\nabla u} : \jump{v} - \sumF \int_F \avg{\nabla v} : \jump{u} \\ + \sumF \int_F \frac{\alpha}{h_K} \jump{u} : \jump{v}\right), \\ c_h(w; u, v) &= - \sumK \int_K u \cdot \nabla \cdot (v \otimes w) + \sumK \int_{\partial_K} w \cdot n \hat{u}^{w} \cdot v, \\ L_{a_h}(v_h) &= Re^{-1} \left(- \int_{\partial \Omega} u_D \otimes n : \nabla_h v_h + \frac{\alpha}{h} u_D \otimes n : v_h \otimes n \right), \\ L_{c_h}(v_h) &= - \int_{\partial \Omega} u_D \cdot n \hat{u}_D \cdot v_h, \\ b_h(v, q) &= - \int_K \nabla \cdot v q. \end{align} $$ ## Implementation We begin by importing the required modules and functions ```python from mpi4py import MPI from petsc4py import PETSc import numpy as np import ufl from dolfinx import default_real_type, fem, has_adios2, io, mesh from dolfinx.fem.petsc import LinearProblem if np.issubdtype(PETSc.ScalarType, np.complexfloating): print("Demo should only be executed with DOLFINx real mode") exit(0) ``` We also define some helper functions that will be used later ```python def norm_L2(comm, v): """Compute the L2(Ω)-norm of v""" return np.sqrt( comm.allreduce(fem.assemble_scalar(fem.form(ufl.inner(v, v) * ufl.dx)), op=MPI.SUM) ) def domain_average(msh, v): """Compute the average of a function over the domain""" vol = msh.comm.allreduce( fem.assemble_scalar(fem.form(fem.Constant(msh, default_real_type(1.0)) * ufl.dx)), op=MPI.SUM, ) return (1 / vol) * msh.comm.allreduce(fem.assemble_scalar(fem.form(v * ufl.dx)), op=MPI.SUM) def u_e_expr(x): """Expression for the exact velocity solution to Kovasznay flow""" return np.vstack( ( 1 - np.exp((Re / 2 - np.sqrt(Re**2 / 4 + 4 * np.pi**2)) * x[0]) * np.cos(2 * np.pi * x[1]), (Re / 2 - np.sqrt(Re**2 / 4 + 4 * np.pi**2)) / (2 * np.pi) * np.exp((Re / 2 - np.sqrt(Re**2 / 4 + 4 * np.pi**2)) * x[0]) * np.sin(2 * np.pi * x[1]), ) ) def p_e_expr(x): """Expression for the exact pressure solution to Kovasznay flow""" return (1 / 2) * (1 - np.exp(2 * (Re / 2 - np.sqrt(Re**2 / 4 + 4 * np.pi**2)) * x[0])) def f_expr(x): """Expression for the applied force""" return np.vstack((np.zeros_like(x[0]), np.zeros_like(x[0]))) ``` We define some simulation parameters ```python n = 16 num_time_steps = 25 t_end = 10 Re = 25 # Reynolds Number k = 1 # Polynomial degree ``` Next, we create a mesh and the required functions spaces over it. Since the velocity uses an $H(\text{div})$-conforming function space, we also create a vector valued discontinuous Lagrange space to interpolate into for artifact free visualisation. ```python msh = mesh.create_unit_square(MPI.COMM_WORLD, n, n) # Function spaces for the velocity and for the pressure V = fem.functionspace(msh, ("Raviart-Thomas", k + 1)) Q = fem.functionspace(msh, ("Discontinuous Lagrange", k)) VQ = ufl.MixedFunctionSpace(V, Q) # Function space for visualising the velocity field gdim = msh.geometry.dim W = fem.functionspace(msh, ("Discontinuous Lagrange", k + 1, (gdim,))) # Define trial and test functions u, p = ufl.TrialFunctions(VQ) v, q = ufl.TestFunctions(VQ) delta_t = fem.Constant(msh, default_real_type(t_end / num_time_steps)) alpha = fem.Constant(msh, default_real_type(6.0 * k**2)) h = ufl.CellDiameter(msh) n = ufl.FacetNormal(msh) def jump(phi, n): return ufl.outer(phi("+"), n("+")) + ufl.outer(phi("-"), n("-")) ``` We set up the variational formulation of the Stokes problem for the initial condition, omitting the convective term: ```python a = (1.0 / Re) * ( ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx - ufl.inner(ufl.avg(ufl.grad(u)), jump(v, n)) * ufl.dS - ufl.inner(jump(u, n), ufl.avg(ufl.grad(v))) * ufl.dS + (alpha / ufl.avg(h)) * ufl.inner(jump(u, n), jump(v, n)) * ufl.dS - ufl.inner(ufl.grad(u), ufl.outer(v, n)) * ufl.ds - ufl.inner(ufl.outer(u, n), ufl.grad(v)) * ufl.ds + (alpha / h) * ufl.inner(ufl.outer(u, n), ufl.outer(v, n)) * ufl.ds ) a -= ufl.inner(p, ufl.div(v)) * ufl.dx a -= ufl.inner(ufl.div(u), q) * ufl.dx f = fem.Function(W) u_D = fem.Function(V) u_D.interpolate(u_e_expr) L = ufl.inner(f, v) * ufl.dx + (1 / Re) * ( -ufl.inner(ufl.outer(u_D, n), ufl.grad(v)) * ufl.ds + (alpha / h) * ufl.inner(ufl.outer(u_D, n), ufl.outer(v, n)) * ufl.ds ) L += ufl.inner(fem.Constant(msh, default_real_type(0.0)), q) * ufl.dx ``` We create the {py:class}`Dirichlet boundary condition ` ```python msh.topology.create_connectivity(msh.topology.dim - 1, msh.topology.dim) boundary_facets = mesh.exterior_facet_indices(msh.topology) boundary_vel_dofs = fem.locate_dofs_topological(V, msh.topology.dim - 1, boundary_facets) bc_u = fem.dirichletbc(u_D, boundary_vel_dofs) bcs = [bc_u] ``` and solve the problem for the initial condition ```python solver_options = { "ksp_type": "preonly", "pc_type": "lu", "pc_factor_mat_solver_type": "mumps", "mat_mumps_icntl_14": 80, # Increase MUMPS working memory "mat_mumps_icntl_24": 1, # Support solving a singular matrix (pressure nullspace) "mat_mumps_icntl_25": 0, # Support solving a singular matrix (pressure nullspace) "ksp_error_if_not_converged": 1, } u_h = fem.Function(V) p_h = fem.Function(Q) p_h.name = "p" stokes_problem = LinearProblem( ufl.extract_blocks(a), ufl.extract_blocks(L), u=[u_h, p_h], bcs=bcs, kind="mpi", petsc_options_prefix="demo_stokes__stokes_problem_", petsc_options=solver_options, ) try: stokes_problem.solve() except PETSc.Error as e: # type: ignore if e.ierr == 92: print("The required PETSc solver/preconditioner is not available. Exiting.") print(e) exit(0) else: raise e ``` Subtract the average of the pressure since it is only determined up to a constant ```python p_h.x.array[:] -= domain_average(msh, p_h) ``` Write initial condition to file ```python t = 0.0 if has_adios2: u_vis = fem.Function(W, name="u_init") u_vis.interpolate(u_h) u_file = io.VTXWriter(msh.comm, "u.bp", u_vis) p_file = io.VTXWriter(msh.comm, "p.bp", p_h) u_file.write(t) p_file.write(t) else: print("File output requires ADIOS2.") ``` Create function to store solution and previous time step ```python u_n = fem.Function(V, name="u_prev") u_n.x.array[:] = u_h.x.array ``` Now we add the time stepping and convective terms and set up the {py:class}`LinearProblem ` ```python lmbda = ufl.conditional(ufl.gt(ufl.dot(u_n, n), 0), 1, 0) u_uw = lmbda("+") * u("+") + lmbda("-") * u("-") a += ( ufl.inner(u / delta_t, v) * ufl.dx - ufl.inner(u, ufl.div(ufl.outer(v, u_n))) * ufl.dx + ufl.inner((ufl.dot(u_n, n))("+") * u_uw, v("+")) * ufl.dS + ufl.inner((ufl.dot(u_n, n))("-") * u_uw, v("-")) * ufl.dS + ufl.inner(ufl.dot(u_n, n) * lmbda * u, v) * ufl.ds ) L += ( ufl.inner(u_n / delta_t, v) * ufl.dx - ufl.inner(ufl.dot(u_n, n) * (1 - lmbda) * u_D, v) * ufl.ds ) navier_stokes_problem = LinearProblem( ufl.extract_blocks(a), ufl.extract_blocks(L), u=[u_h, p_h], bcs=bcs, kind="mpi", petsc_options_prefix="demo_stokes__navier_stokes_problem_", petsc_options=solver_options, ) ``` We perform the time-stepping as a for-loop ```python for n in range(num_time_steps): t += delta_t.value navier_stokes_problem.solve() p_h.x.array[:] -= domain_average(msh, p_h) # Write to file if has_adios2: u_vis.interpolate(u_h) u_file.write(t) p_file.write(t) # Update u_n u_n.x.array[:] = u_h.x.array try: u_file.close() p_file.close() except NameError: pass ``` Now we compare the computed solution to the exact solution ```python # Function spaces for exact velocity and pressure V_e = fem.functionspace(msh, ("Lagrange", k + 3, (gdim,))) Q_e = fem.functionspace(msh, ("Lagrange", k + 2)) u_e = fem.Function(V_e) u_e.interpolate(u_e_expr) p_e = fem.Function(Q_e) p_e.interpolate(p_e_expr) # Compute errors e_u = norm_L2(msh.comm, u_h - u_e) e_div_u = norm_L2(msh.comm, ufl.div(u_h)) ``` This scheme conserves mass exactly, so we check this ```python assert np.isclose(e_div_u, 0.0, atol=float(1.0e5 * np.finfo(default_real_type).eps)) p_e_avg = domain_average(msh, p_e) e_p = norm_L2(msh.comm, p_h - (p_e - p_e_avg)) PETSc.Sys.Print(f"e_u = {e_u:.5e}") PETSc.Sys.Print(f"e_div_u = {e_div_u:.5e}") PETSc.Sys.Print(f"e_p = {e_p:.5e}") ```