--- jupytext: main_language: python text_representation: extension: .md format_name: myst format_version: 0.13 jupytext_version: 1.16.1 --- # Variants of Lagrange elements This demo ({download}`demo_lagrange_variants.py`) illustrates how to: - Define finite elements directly using Basix - Create variants of Lagrange finite elements We begin this demo by importing the required modules. ```python from mpi4py import MPI import matplotlib.pylab as plt import basix import basix.ufl import ufl # type: ignore from dolfinx import fem, mesh from ufl import dx ``` ## Equispaced versus Gauss--Lobatto--Legendre (GLL) points The basis functions of a Lagrange element are defined by placing points on the reference element, with each basis function equal to 1 at one point and 0 at all the other points. To demonstrate the influence of interpolation point position, we create a degree 10 element on an interval using equally spaced points, and plot the basis functions. We create this element using `basix.ufl`'s `element` function. The function `element.tabulate` returns a 3-dimensional array with shape (derivatives, points, (value size) * (basis functions)). In this example, we only tabulate the 0th derivative and the value size is 1, so we take the slice `[0, :, :]` to get a 2-dimensional array. ```python element = basix.ufl.element( basix.ElementFamily.P, basix.CellType.interval, 10, basix.LagrangeVariant.equispaced ) lattice = basix.create_lattice(basix.CellType.interval, 200, basix.LatticeType.equispaced, True) values = element.tabulate(0, lattice)[0, :, :] if MPI.COMM_WORLD.size == 1: for i in range(values.shape[1]): plt.plot(lattice, values[:, i]) plt.plot(element._element.points, [0] * 11, "ko") plt.ylim([-1, 6]) plt.savefig("demo_lagrange_variants_equispaced_10.png") plt.clf() ``` ![The basis functions of a degree 10 Lagrange space defined using equispaced points.](demo_lagrange_variants_equispaced_10.png) The basis functions exhibit large peaks towards the ends of the interval. This is known as [Runge's phenomenon](https://en.wikipedia.org/wiki/Runge%27s_phenomenon). The amplitude of the peaks increases as the degree of the element is increased. To rectify this issue, we can create a 'variant' of a Lagrange element that uses the [Gauss--Lobatto--Legendre (GLL) points](https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss%E2%80%93Lobatto_rules) to define the basis functions. ```python element = basix.ufl.element( basix.ElementFamily.P, basix.CellType.interval, 10, basix.LagrangeVariant.gll_warped ) values = element.tabulate(0, lattice)[0, :, :] if MPI.COMM_WORLD.size == 1: # Skip this plotting in parallel for i in range(values.shape[1]): plt.plot(lattice, values[:, i]) plt.plot(element._element.points, [0] * 11, "ko") plt.ylim([-1, 6]) plt.savefig("demo_lagrange_variants_gll_10.png") plt.clf() ``` ![The basis functions of a degree 10 Lagrange space defined using GLL points.](demo_lagrange_variants_gll_10.png) The points are clustered towards the endpoints of the interval, and the basis functions do not exhibit Runge's phenomenon. ## Computing the error of an interpolation To demonstrate how the choice of Lagrange variant can affect computed results, we compute the error when interpolating a function into a finite element space. For this example, we define a saw tooth wave that will be interpolated. ```python def saw_tooth(x): f = 4 * abs(x - 0.43) for _ in range(8): f = abs(f - 0.3) return f ``` We begin by interpolating the saw tooth wave with the two Lagrange elements, and plot the finite element interpolation. ```python msh = mesh.create_unit_interval(MPI.COMM_WORLD, 10) x = ufl.SpatialCoordinate(msh) u_exact = saw_tooth(x[0]) for variant in [basix.LagrangeVariant.equispaced, basix.LagrangeVariant.gll_warped]: ufl_element = basix.ufl.element(basix.ElementFamily.P, basix.CellType.interval, 10, variant) V = fem.functionspace(msh, ufl_element) uh = fem.Function(V) uh.interpolate(lambda x: saw_tooth(x[0])) if MPI.COMM_WORLD.size == 1: # Skip this plotting in parallel pts: list[list[float]] = [] cells: list[int] = [] for cell in range(10): for i in range(51): pts.append([cell / 10 + i / 50 / 10, 0, 0]) cells.append(cell) values = uh.eval(pts, cells) plt.plot(pts, [saw_tooth(i[0]) for i in pts], "k--") plt.plot(pts, values, "r-") plt.legend(["function", "approximation"]) plt.ylim([-0.1, 0.4]) plt.title(variant.name) plt.savefig(f"demo_lagrange_variants_interpolation_{variant.name}.png") plt.clf() ``` ![](demo_lagrange_variants_interpolation_equispaced.png) ![](demo_lagrange_variants_interpolation_gll_warped.png) The plots illustrate that Runge's phenomenon leads to the interpolation being less accurate when using the equispaced variant of Lagrange compared to the GLL variant. To quantify the error, we compute the interpolation error in the $L_2$ norm, $$\left\|u - u_h\right\|_2 = \left(\int_0^1 (u - u_h)^2\right)^{\frac{1}{2}},$$ where $u$ is the function and $u_h$ is its interpolation in the finite element space. The following code uses UFL to compute the $L_2$ error for the equispaced and GLL variants. The $L_2$ error for the GLL variant is considerably smaller than the error for the equispaced variant. ```python for variant in [basix.LagrangeVariant.equispaced, basix.LagrangeVariant.gll_warped]: ufl_element = basix.ufl.element(basix.ElementFamily.P, basix.CellType.interval, 10, variant) V = fem.functionspace(msh, ufl_element) uh = fem.Function(V) uh.interpolate(lambda x: saw_tooth(x[0])) M = fem.form((u_exact - uh) ** 2 * dx) error = msh.comm.allreduce(fem.assemble_scalar(M), op=MPI.SUM) print(f"Computed L2 interpolation error ({variant.name}):", error**0.5) ``` ## Available Lagrange variants Basix supports numerous Lagrange variants, including: - `basix.LagrangeVariant.equispaced` - `basix.LagrangeVariant.gll_warped` - `basix.LagrangeVariant.gll_isaac` - `basix.LagrangeVariant.gll_centroid` - `basix.LagrangeVariant.chebyshev_warped` - `basix.LagrangeVariant.chebyshev_isaac` - `basix.LagrangeVariant.chebyshev_centroid` - `basix.LagrangeVariant.gl_warped` - `basix.LagrangeVariant.gl_isaac` - `basix.LagrangeVariant.gl_centroid` - `basix.LagrangeVariant.legendre` ### Equispaced points The variant `basix.LagrangeVariant.equispaced` defines an element using equally spaced points on the cell. ### GLL points For intervals, quadrilaterals and hexahedra, the variants `basix.LagrangeVariant.gll_warped`, `basix.LagrangeVariant.gll_isaac` and `basix.LagrangeVariant.gll_centroid` all define an element using GLL-type points. On triangles and tetrahedra, the three variants use different methods to distribute points on the cell so that the points on each edge are GLL points. The three methods used are described in [the Basix documentation](https://docs.fenicsproject.org/basix/main/cpp/namespacebasix_1_1lattice.html). ### Chebyshev points The variants `basix.LagrangeVariant.chebyshev_warped`, `basix.LagrangeVariant.chebyshev_isaac` and `basix.LagrangeVariant.chebyshev_centroid` can be used to define elements using [Chebyshev points](https://en.wikipedia.org/wiki/Chebyshev_nodes). As with GLL points, these three variants are the same on intervals, quadrilaterals and hexahedra, and vary on simplex cells. ### GL points The variants `basix.LagrangeVariant.gl_warped`, `basix.LagrangeVariant.gl_isaac` and `basix.LagrangeVariant.gl_centroid` can be used to define elements using [Gauss-Legendre (GL) points](https://en.wikipedia.org/wiki/Gaussian_quadrature#Gauss%E2%80%93Legendre_quadrature). GL points do not include the endpoints, hence this variant can only be used for discontinuous elements. ### Legendre polynomials The variant `basix.LagrangeVariant.legendre` can be used to define a Lagrange-like element whose basis functions are the orthonormal Legendre polynomials. These polynomials are not defined using points at the endpoints, so can also only be used for discontinuous elements.