Home Installation Demos C++ docs Python docs
basix.numba_helpers¶
Helper functions for writing DOLFINx custom kernels using Numba.
Functions
|
Apply dof transformations to some data. |
|
Pre-apply dof transformations to some data on a hexahedron. |
|
Apply dof transformations to some data on an interval. |
|
Apply dof transformations to some data on an prism. |
|
Apply dof transformations to some data on an prism. |
Apply dof transformations to some data on an quadrilateral. |
|
|
Apply dof transformations to some data on a tetrahedron. |
|
Apply dof transformations to some data on a triangle. |
|
Right(post)-apply dof transformations to some transposed data. |
Right(post)-apply dof transformations to some transposed data on a hexahedron. |
|
Right(post)-apply dof transformations to some transposed data on an interval. |
|
|
Right(post)-apply dof transformations to some transposed data on an prism. |
Right(post)-apply dof transformations to some transposed data on an prism. |
|
Right(post)-apply dof transformations to some transposed data on an quadrilateral. |
|
Right(post)-apply dof transformations to some transposed data on a tetrahedron. |
|
Right(post)-apply dof transformations to some transposed data on a triangle. |
- basix.numba_helpers.T_apply(tdim: int, edge_count: int, face_count: int, entity_transformations: dict[str, numpy.ndarray[typing.Any, numpy.dtype[+ScalarType]]], entity_dofs: list[list[int]], data: ndarray[Any, dtype[ScalarType]], cell_info: int, face_types: list[str])¶
Apply dof transformations to some data.
- Parameters:
tdim – The topological dimension of the cell.
edge_count – The number of edges the cell has.
face_count – The number of faces the cell has.
entity_transformations – The DOF transformations for each entity.
entity_dofs – The number of DOFs on each entity.
data – The data. This will be changed by this function.
cell_info – An integer representing the orientations of the subentities of the cell.
face_types – A list of strings giving the shapes of the faces of the cell.
- basix.numba_helpers.T_apply_hexahedron(entity_transformations: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.float64]]], entity_dofs: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.int32]]], data: ndarray[Any, dtype[ScalarType]], cell_info: int)¶
Pre-apply dof transformations to some data on a hexahedron.
- Parameters:
entity_transformations – The DOF transformations for each entity.
entity_dofs – The number of DOFs on each entity.
data – The data. This will be changed by this function.
cell_info – An integer representing the orientations of the subentities of the cell.
- basix.numba_helpers.T_apply_interval(entity_transformations: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.float64]]], entity_dofs: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.int32]]], data: ndarray[Any, dtype[ScalarType]], cell_info: int)¶
Apply dof transformations to some data on an interval.
- Parameters:
entity_transformations – The DOF transformations for each entity.
entity_dofs – The number of DOFs on each entity.
data – The data. This will be changed by this function.
cell_info – An integer representing the orientations of the subentities of the cell.
- basix.numba_helpers.T_apply_prism(entity_transformations: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.float64]]], entity_dofs: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.int32]]], data: ndarray[Any, dtype[ScalarType]], cell_info: int)¶
Apply dof transformations to some data on an prism.
- Parameters:
entity_transformations – The DOF transformations for each entity.
entity_dofs – The number of DOFs on each entity.
data – The data. This will be changed by this function.
cell_info – An integer representing the orientations of the subentities of the cell.
- basix.numba_helpers.T_apply_pyramid(entity_transformations: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.float64]]], entity_dofs: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.int32]]], data: ndarray[Any, dtype[ScalarType]], cell_info: int)¶
Apply dof transformations to some data on an prism.
- Parameters:
entity_transformations – The DOF transformations for each entity.
entity_dofs – The number of DOFs on each entity.
data – The data. This will be changed by this function.
cell_info – An integer representing the orientations of the subentities of the cell.
- basix.numba_helpers.T_apply_quadrilateral(entity_transformations: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.float64]]], entity_dofs: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.int32]]], data: ndarray[Any, dtype[ScalarType]], cell_info: int)¶
Apply dof transformations to some data on an quadrilateral.
- Parameters:
entity_transformations – The DOF transformations for each entity.
entity_dofs – The number of DOFs on each entity.
data – The data. This will be changed by this function.
cell_info – An integer representing the orientations of the sub-entities of the cell.
- basix.numba_helpers.T_apply_tetrahedron(entity_transformations: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.float64]]], entity_dofs: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.int32]]], data: ndarray[Any, dtype[ScalarType]], cell_info: int)¶
Apply dof transformations to some data on a tetrahedron.
- Parameters:
entity_transformations – The DOF transformations for each entity.
entity_dofs – The number of DOFs on each entity.
data – The data. This will be changed by this function.
cell_info – An integer representing the orientations of the subentities of the cell.
- basix.numba_helpers.T_apply_triangle(entity_transformations: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.float64]]], entity_dofs: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.int32]]], data: ndarray[Any, dtype[ScalarType]], cell_info: int)¶
Apply dof transformations to some data on a triangle.
- Parameters:
entity_transformations – The DOF transformations for each entity.
entity_dofs – The number of DOFs on each entity.
data – The data. This will be changed by this function.
cell_info – An integer representing the orientations of the sub-entities of the cell.
- basix.numba_helpers.Tt_apply_right(tdim: int, edge_count: int, face_count: int, entity_transformations: list[int], entity_dofs: list[int], data: ndarray[Any, dtype[ScalarType]], cell_info: int, face_types: list[str])¶
Right(post)-apply dof transformations to some transposed data.
- Parameters:
tdim – The topological dimension of the cell.
edge_count – The number of edges the cell has.
face_count – The number of faces the cell has.
entity_transformations – The DOF transformations for each entity.
entity_dofs – The number of DOFs on each entity.
data – The data. This will be changed by this function.
cell_info – An integer representing the orientations of the subentities of the cell.
face_types – A list of strings giving the shapes of the faces of the cell.
- basix.numba_helpers.Tt_apply_right_hexahedron(entity_transformations: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.float64]]], entity_dofs: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.int32]]], data: ndarray[Any, dtype[ScalarType]], cell_info: int)¶
Right(post)-apply dof transformations to some transposed data on a hexahedron.
- Parameters:
entity_transformations – The DOF transformations for each entity.
entity_dofs – The number of DOFs on each entity.
data – The data. This will be changed by this function.
cell_info – An integer representing the orientations of the subentities of the cell.
- basix.numba_helpers.Tt_apply_right_interval(entity_transformations: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.float64]]], entity_dofs: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.int32]]], data: ndarray[Any, dtype[ScalarType]], cell_info: int)¶
Right(post)-apply dof transformations to some transposed data on an interval.
- Parameters:
entity_transformations – The DOF transformations for each entity.
entity_dofs – The number of DOFs on each entity.
data – The data. This will be changed by this function.
cell_info – An integer representing the orientations of the subentities of the cell.
- basix.numba_helpers.Tt_apply_right_prism(entity_transformations: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.float64]]], entity_dofs: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.int32]]], data: ndarray[Any, dtype[ScalarType]], cell_info: int)¶
Right(post)-apply dof transformations to some transposed data on an prism.
- Parameters:
entity_transformations – The DOF transformations for each entity.
entity_dofs – The number of DOFs on each entity.
data – The data. This will be changed by this function.
cell_info – An integer representing the orientations of the subentities of the cell.
- basix.numba_helpers.Tt_apply_right_pyramid(entity_transformations: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.float64]]], entity_dofs: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.int32]]], data: ndarray[Any, dtype[ScalarType]], cell_info: int)¶
Right(post)-apply dof transformations to some transposed data on an prism.
- Parameters:
entity_transformations – The DOF transformations for each entity.
entity_dofs – The number of DOFs on each entity.
data – The data. This will be changed by this function.
cell_info – An integer representing the orientations of the subentities of the cell.
- basix.numba_helpers.Tt_apply_right_quadrilateral(entity_transformations: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.float64]]], entity_dofs: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.int32]]], data: ndarray[Any, dtype[ScalarType]], cell_info: int)¶
Right(post)-apply dof transformations to some transposed data on an quadrilateral.
- Parameters:
entity_transformations – The DOF transformations for each entity.
entity_dofs – The number of DOFs on each entity.
data – The data. This will be changed by this function.
cell_info – An integer representing the orientations of the subentities of the cell.
- basix.numba_helpers.Tt_apply_right_tetrahedron(entity_transformations: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.float64]]], entity_dofs: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.int32]]], data: ndarray[Any, dtype[ScalarType]], cell_info: int)¶
Right(post)-apply dof transformations to some transposed data on a tetrahedron.
- Parameters:
entity_transformations – The DOF transformations for each entity.
entity_dofs – The number of DOFs on each entity.
data – The data. This will be changed by this function.
cell_info – An integer representing the orientations of the
cell. (subentities of the) –
- basix.numba_helpers.Tt_apply_right_triangle(entity_transformations: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.float64]]], entity_dofs: dict[str, numpy.ndarray[Any, numpy.dtype[numpy.int32]]], data: ndarray[Any, dtype[ScalarType]], cell_info: int)¶
Right(post)-apply dof transformations to some transposed data on a triangle.
- Parameters:
entity_transformations – The DOF transformations for each entity.
entity_dofs – The number of DOFs on each entity.
data – The data. This will be changed by this function.
cell_info – An integer representing the orientations of the subentities of the cell.