Note: this is documentation for an old release. View the latest documentation at docs.fenicsproject.org/v0.7.0.post0/v0.9.0/cpp

Basix 0.7.0

Home     Installation     Demos     C++ docs     Python docs

docs.h
1 #include <string>
2 
3 namespace basix::docstring
4 {
5 
6 const std::string topology = R"(
7 Cell topology
8 
9 Args:
10  celltype: Cell Type
11 
12 Returns::
13  List of topology (vertex indices) for each dimension (0..tdim)
14 )";
15 
16 const std::string geometry = R"(
17 Cell geometry
18 
19 Args:
20  celltype: Cell Type
21 
22 Returns::
23  (0) Vertex point data of the cell and (1) the shape of the
24  data array. The points are stored in row-major format and the shape
25  is is (npoints, gdim)
26 )";
27 
28 const std::string sub_entity_connectivity = R"(
29 Get the numbers of entities connected to each subentity of the cell.
30 
31 Returns a vector of the form: output[dim][entity_n][connected_dim] =
32 [connected_entity_n0, connected_entity_n1, ...] This indicates that
33 the entity of dimension `dim` and number `entity_n` is connected to
34 the entities of dimension `connected_dim` and numbers
35 `connected_entity_n0`, `connected_entity_n1`, ...
36 
37 Args:
38  celltype: Cell Type
39 
40 Returns:
41  List of topology (vertex indices) for each dimension (0..tdim)
42 )";
43 
44 const std::string sub_entity_geometry = R"(
45 Sub-entity of a cell, given by topological dimension and index
46 
47 Args:
48  celltype: The cell::type
49  dim: Dimension of sub-entity
50  index: Local index of sub-entity
51 
52 Returns:
53  Set of vertex points of the sub-entity. Shape is (npoints, gdim)
54 )";
55 
56 const std::string create_lattice__celltype_n_type_exterior = R"(
57 Create a lattice of points on a reference cell optionally
58 including the outer surface points.
59 
60 For a given `celltype`, this creates a set of points on a regular
61 grid which covers the cell, eg for a quadrilateral, with n=2, the
62 points are: `[0,0], [0.5,0], [1,0], [0,0.5], [0.5,0.5], [1,0.5],
63 [0,1], [0.5,1], [1,1]`. If the parameter exterior is set to false,
64 the points lying on the external boundary are omitted, in this case
65 for a quadrilateral with `n == 2`, the points are: `[0.5, 0.5]`. The
66 lattice type can be chosen as type::equispaced or type::gll. The
67 type::gll lattice has points spaced along each edge at the
68 Gauss-Lobatto-Legendre quadrature points. These are the same as
69 type::equispaced when `n < 3`.
70 
71 Args:
72  celltype: The cell type
73  n: Size in each direction. There are `n + 1` points along each edge of the cell
74  type: A lattice type
75  exterior: If set, includes outer boundaries
76 
77 Returns:
78  Set of points. Shape is `(npoints, tdim)` and storage is
79  row-major
80 )";
81 
82 const std::string create_lattice__celltype_n_type_exterior_method = R"(
83 Create a lattice of points on a reference cell optionally
84 including the outer surface points.
85 
86 For a given `celltype`, this creates a set of points on a regular
87 grid which covers the cell, eg for a quadrilateral, with n=2, the
88 points are: `[0,0], [0.5,0], [1,0], [0,0.5], [0.5,0.5], [1,0.5],
89 [0,1], [0.5,1], [1,1]`. If the parameter exterior is set to false,
90 the points lying on the external boundary are omitted, in this case
91 for a quadrilateral with `n == 2`, the points are: `[0.5, 0.5]`. The
92 lattice type can be chosen as type::equispaced or type::gll. The
93 type::gll lattice has points spaced along each edge at the
94 Gauss-Lobatto-Legendre quadrature points. These are the same as
95 type::equispaced when `n < 3`.
96 
97 Args:
98  celltype: The cell type
99  n: Size in each direction. There are `n + 1` points along each edge of the cell
100  type: A lattice type
101  exterior: If set, includes outer boundaries
102  simplex_method: The method used to generate points on simplices
103 
104 Returns:
105  Set of points. Shape is `(npoints, tdim)` and storage is
106  row-major
107 )";
108 
109 const std::string cell_volume = R"(
110 Get the volume of a reference cell
111 
112 Args:
113  cell_type: Type of cell
114 
115 Returns:
116  The volume of the cell
117 )";
118 
119 const std::string cell_facet_normals = R"(
120 Get the normals to the facets of a reference cell oriented using the
121 low-to-high ordering of the facet
122 
123 Args:
124  cell_type: Type of cell
125 
126 Returns:
127  The normals. Shape is (nfacets, gdim)
128 )";
129 
130 const std::string cell_facet_reference_volumes = R"(
131 Get the reference volumes of the facets of a reference cell
132 
133 Args:
134  cell_type: Type of cell
135 
136 Returns:
137  The volumes of the references associated with each facet
138 )";
139 
140 const std::string cell_facet_outward_normals = R"(
141 Get the (outward) normals to the facets of a reference cell
142 
143 Args:
144  cell_type: Type of cell
145 
146 Returns:
147  The outward normals. Shape is (nfacets, gdim)
148 )";
149 
150 const std::string cell_facet_orientations = R"(
151 Get an array of bools indicating whether or not the facet normals are
152 outward pointing
153 
154 Args:
155  cell_type: Type of cell
156 
157 Returns:
158  The orientations
159 )";
160 
161 const std::string cell_facet_jacobians = R"(
162 Get the jacobians of the facets of a reference cell
163 
164 Args:
165  cell_type: Type of cell
166 
167 Returns:
168  The jacobians of the facets. Shape is (nfacets, gdim, gdim - 1)
169 )";
170 
171 const std::string FiniteElement__tabulate = R"(
172 Compute basis values and derivatives at set of points.
173 
174 NOTE: The version of `FiniteElement::tabulate` with the basis data
175 as an out argument should be preferred for repeated call where
176 performance is critical
177 
178 Args:
179  nd: The order of derivatives, up to and including, to compute. Use 0 for the basis functions only.
180  x: The points at which to compute the basis functions. The shape of x is (number of points, geometric dimension).
181 
182 Returns:
183  The basis functions (and derivatives). The shape is
184  (derivative, point, basis fn index, value index).
185  - The first index is the derivative, with higher derivatives are
186  stored in triangular (2D) or tetrahedral (3D) ordering, ie for
187  the (x,y) derivatives in 2D: (0,0), (1,0), (0,1), (2,0), (1,1),
188  (0,2), (3,0)... The function basix::indexing::idx can be used to find the
189  appropriate derivative.
190  - The second index is the point index
191  - The third index is the basis function index
192  - The fourth index is the basis function component. Its has size
193  one for scalar basis functions.
194 )";
195 
196 const std::string FiniteElement__push_forward = R"(
197 Map function values from the reference to a physical cell. This
198 function can perform the mapping for multiple points, grouped by
199 points that share a common Jacobian.
200 
201 Args:
202  U: The function values on the reference. The indices are [Jacobian index, point index, components].
203  J: The Jacobian of the mapping. The indices are [Jacobian index, J_i, J_j].
204  detJ: The determinant of the Jacobian of the mapping. It has length `J.shape(0)`
205  K: The inverse of the Jacobian of the mapping. The indices are [Jacobian index, K_i, K_j].
206 
207 Returns:
208  The function values on the cell. The indices are [Jacobian
209  index, point index, components].
210 )";
211 
212 const std::string FiniteElement__pull_back = R"(
213 Map function values from a physical cell to the reference
214 
215 Args:
216  u: The function values on the cell
217  J: The Jacobian of the mapping
218  detJ: The determinant of the Jacobian of the mapping
219  K: The inverse of the Jacobian of the mapping
220 
221 Returns:
222  The function values on the reference. The indices are
223  [Jacobian index, point index, components].
224 )";
225 
226 const std::string FiniteElement__apply_dof_transformation = R"(
227 Apply DOF transformations to some data
228 
229 NOTE: This function is designed to be called at runtime, so its
230 performance is critical.
231 
232 Args:
233  data: The data
234  block_size: The number of data points per DOF
235  cell_info: The permutation info for the cell
236 
237 Returns:
238  data: The data
239 )";
240 
241 const std::string FiniteElement__apply_dof_transformation_to_transpose = R"(
242 Apply DOF transformations to some transposed data
243 
244 NOTE: This function is designed to be called at runtime, so its
245 performance is critical.
246 
247 Args:
248  data: The data
249  block_size: The number of data points per DOF
250  cell_info: The permutation info for the cell
251 
252 Returns:
253  data: The data
254 )";
255 
256 const std::string FiniteElement__apply_inverse_transpose_dof_transformation
257  = R"(
258 Apply inverse transpose DOF transformations to some data
259 
260 NOTE: This function is designed to be called at runtime, so its
261 performance is critical.
262 
263 Args:
264  data: The data
265  block_size: The number of data points per DOF
266  cell_info: The permutation info for the cell
267 
268 Returns:
269  data: The data
270 )";
271 
272 const std::string FiniteElement__base_transformations = R"(
273 Get the base transformations.
274 
275 The base transformations represent the effect of rotating or reflecting
276 a subentity of the cell on the numbering and orientation of the DOFs.
277 This returns a list of matrices with one matrix for each subentity
278 permutation in the following order:
279 Reversing edge 0, reversing edge 1, ...
280 Rotate face 0, reflect face 0, rotate face 1, reflect face 1, ...
281 
282 *Example: Order 3 Lagrange on a triangle*
283 
284 This space has 10 dofs arranged like:
285 
286 .. code-block::
287 
288  2
289  |\
290  6 4
291  | \
292  5 9 3
293  | \
294  0-7-8-1
295 
296 
297 For this element, the base transformations are:
298 [Matrix swapping 3 and 4,
299 Matrix swapping 5 and 6,
300 Matrix swapping 7 and 8]
301 The first row shows the effect of reversing the diagonal edge. The
302 second row shows the effect of reversing the vertical edge. The third
303 row shows the effect of reversing the horizontal edge.
304 
305 *Example: Order 1 Raviart-Thomas on a triangle*
306 
307 This space has 3 dofs arranged like:
308 
309 .. code-block::
310 
311  |\
312  | \
313  | \
314  <-1 0
315  | / \
316  | L ^ \
317  | | \
318  ---2---
319 
320 
321 These DOFs are integrals of normal components over the edges: DOFs 0 and 2
322 are oriented inward, DOF 1 is oriented outwards.
323 For this element, the base transformation matrices are:
324 
325 .. code-block::
326 
327  0: [[-1, 0, 0],
328  [ 0, 1, 0],
329  [ 0, 0, 1]]
330  1: [[1, 0, 0],
331  [0, -1, 0],
332  [0, 0, 1]]
333  2: [[1, 0, 0],
334  [0, 1, 0],
335  [0, 0, -1]]
336 
337 
338 The first matrix reverses DOF 0 (as this is on the first edge). The second
339 matrix reverses DOF 1 (as this is on the second edge). The third matrix
340 reverses DOF 2 (as this is on the third edge).
341 
342 *Example: DOFs on the face of Order 2 Nedelec first kind on a tetrahedron*
343 
344 On a face of this tetrahedron, this space has two face tangent DOFs:
345 
346 .. code-block::
347 
348  |\ |\
349  | \ | \
350  | \ | ^\
351  | \ | | \
352  | 0->\ | 1 \
353  | \ | \
354  ------ ------
355 
356 
357 For these DOFs, the subblocks of the base transformation matrices are:
358 
359 .. code-block::
360 
361  rotation: [[-1, 1],
362  [ 1, 0]]
363  reflection: [[0, 1],
364  [1, 0]]
365 
366 
367 
368 Returns:
369  The base transformations for this element. The shape is
370  (ntranformations, ndofs, ndofs)
371 )";
372 
373 const std::string FiniteElement__entity_transformations = R"(
374 Return the entity dof transformation matrices
375 
376 Returns:
377  The base transformations for this element. The shape is
378  (ntranformations, ndofs, ndofs)
379 )";
380 
381 const std::string FiniteElement__get_tensor_product_representation = R"(
382 Get the tensor product representation of this element, or throw an
383 error if no such factorisation exists.
384 
385 The tensor product representation will be a vector of tuples. Each
386 tuple contains a vector of finite elements, and a vector of
387 integers. The vector of finite elements gives the elements on an
388 interval that appear in the tensor product representation. The
389 vector of integers gives the permutation between the numbering of
390 the tensor product DOFs and the number of the DOFs of this Basix
391 element.
392 
393 Returns:
394  The tensor product representation
395 )";
396 
397 const std::string create_custom_element = R"(
398 Create a custom finite element
399 
400 Args:
401  cell_type: The cell type
402  value_shape: The value shape of the element
403  wcoeffs: Matrices for the kth value index containing the expansion coefficients defining a polynomial basis spanning the polynomial space for this element. Shape is (dim(finite element polyset), dim(Legendre polynomials))
404  x: Interpolation points. Indices are (tdim, entity index, point index, dim)
405  M: The interpolation matrices. Indices are (tdim, entity index, dof, vs, point_index, derivative)
406  interpolation_nderivs: The number of derivatives that need to be used during interpolation
407  map_type: The type of map to be used to map values from the reference to a cell
408  sobolev_space: The underlying Sobolev space for the element
409  discontinuous: Indicates whether or not this is the discontinuous version of the element
410  highest_complete_degree: The highest degree n such that a Lagrange (or vector Lagrange) element of degree n is a subspace of this element
411  highest_degree: The degree of a polynomial in this element's polyset
412  poly_type: The type of polyset to use for this element
413 
414 Returns:
415  A custom finite element
416 )";
417 
418 const std::string
419  create_element__family_cell_degree_lvariant_dvariant_discontinuous_dof_ordering
420  = R"(
421 Create an element using a given Lagrange variant and a given DPC variant
422 
423 Args:
424  family: The element family
425  cell: The reference cell type that the element is defined on
426  degree: The degree of the element
427  lvariant: The variant of Lagrange to use
428  dvariant: The variant of DPC to use
429  discontinuous: Indicates whether the element is discontinuous between cells points of the element. The discontinuous element will have the same DOFs, but they will all be associated with the interior of the cell.
430  dof_ordering: Ordering of dofs for ElementDofLayout
431 
432 Returns:
433  A finite element
434 )";
435 
436 const std::string compute_interpolation_operator = R"(
437 Compute a matrix that represents the interpolation between
438 two elements.
439 
440 If the two elements have the same value size, this function returns
441 the interpolation between them.
442 
443 If element_from has value size 1 and element_to has value size > 1,
444 then this function returns a matrix to interpolate from a blocked
445 element_from (ie multiple copies of element_from) into element_to.
446 
447 If element_to has value size 1 and element_from has value size > 1,
448 then this function returns a matrix that interpolates the components
449 of element_from into copies of element_to.
450 
451 NOTE: If the elements have different value sizes and both are
452 greater than 1, this function throws a runtime error
453 
454 In order to interpolate functions between finite element spaces on
455 arbitrary cells, the functions must be pulled back to the reference
456 element (this pull back includes applying DOF transformations). The
457 matrix that this function returns can then be applied, then the
458 result pushed forward to the cell. If element_from and element_to
459 have the same map type, then only the DOF transformations need to be
460 applied, as the pull back and push forward cancel each other out.
461 
462 Args:
463  element_from: The element to interpolate from
464  element_to: The element to interpolate to
465 
466 Returns:
467  Matrix operator that maps the 'from' degrees-of-freedom to
468  the 'to' degrees-of-freedom. Shape is (ndofs(element_to),
469  ndofs(element_from))
470 )";
471 
472 const std::string tabulate_polynomial_set = R"(
473 Tabulate the orthonormal polynomial basis, and derivatives,
474 at points on the reference cell.
475 
476 All derivatives up to the given order are computed. If derivatives
477 are not required, use `n = 0`. For example, order `n = 2` for a 2D
478 cell, will compute the basis \f$\psi, d\psi/dx, d\psi/dy, d^2
479 \psi/dx^2, d^2\psi/dxdy, d^2\psi/dy^2\f$ in that order (0, 0), (1,
480 0), (0, 1), (2, 0), (1, 1), (0 ,2).
481 
482 For an interval cell there are `nderiv + 1` derivatives, for a 2D
483 cell, there are `(nderiv + 1)(nderiv + 2)/2` derivatives, and in 3D,
484 there are `(nderiv + 1)(nderiv + 2)(nderiv + 3)/6`. The ordering is
485 'triangular' with the lower derivatives appearing first.
486 
487 Args:
488  celltype: Cell type
489  ptype: The polynomial type
490  d: Polynomial degree
491  n: Maximum derivative order. Use n = 0 for the basis only.
492  x: Points at which to evaluate the basis. The shape is (number of points, geometric dimension).
493 
494 Returns:
495  Polynomial sets, for each derivative, tabulated at points.
496  The shape is `(number of derivatives computed, number of points,
497  basis index)`.
498 
499  - The first index is the derivative. The first entry is the basis
500  itself. Derivatives are stored in triangular (2D) or tetrahedral
501  (3D) ordering, eg if `(p, q)` denotes `p` order derivative with
502  respect to `x` and `q` order derivative with respect to `y`, [0] ->
503  (0, 0), [1] -> (1, 0), [2] -> (0, 1), [3] -> (2, 0), [4] -> (1, 1),
504  [5] -> (0, 2), [6] -> (3, 0),...
505  The function basix::indexing::idx maps tuples `(p, q, r)` to the
506  array index.
507 
508  - The second index is the point, with index `i` corresponding to the
509  point in row `i` of @p x.
510 
511  - The third index is the basis function index.
512  TODO: Does the order for the third index need to be documented?
513 )";
514 
515 const std::string tabulate_polynomials = R"(
516 Tabulate a set of polynomials.
517 
518 Args:
519  polytype: Polynomial type
520  celltype: Cell type
521  d: Polynomial degree
522  x: Points at which to evaluate the basis. The shape is (number of points, geometric dimension).
523 
524 Returns:
525  Polynomial sets, for each derivative, tabulated at points.
526  The shape is `(basis index, number of points)`.
527 )";
528 
529 const std::string polynomials_dim = R"(
530 Dimension of a polynomial space.
531 
532 Args:
533  polytype: The polynomial type
534  cell: The cell type
535  d: The polynomial degree
536 
537 Returns:
538  The number terms in the basis spanning a space of
539  polynomial degree @p d
540 )";
541 
542 const std::string make_quadrature__rule_celltype_polytype_m = R"(
543 Make a quadrature rule on a reference cell
544 
545 Args:
546  rule: Type of quadrature rule (or use quadrature::Default)
547  celltype: The cell type
548  polytype: The polyset type
549  m: Maximum degree of polynomial that this quadrature rule will integrate exactly
550 
551 Returns:
552  List of points and list of weights. The number of points
553  arrays has shape (num points, gdim)
554 )";
555 
556 const std::string index__p = R"(
557 Compute trivial indexing in a 1D array (for completeness)
558 
559 Args:
560  p: Index in x
561 
562 Returns:
563  1D Index
564 )";
565 
566 const std::string index__p_q = R"(
567 Compute indexing in a 2D triangular array compressed into a 1D
568 array. This can be used to find the index of a derivative returned
569 by `FiniteElement::tabulate`. For instance to find d2N/dx2, use
570 `FiniteElement::tabulate(2, points)[idx(2, 0)];`
571 
572 Args:
573  p: Index in x
574  q: Index in y
575 
576 Returns:
577  1D Index
578 )";
579 
580 const std::string index__p_q_r = R"(
581 Compute indexing in a 3D tetrahedral array compressed into a 1D
582 array
583 
584 Args:
585  p: Index in x
586  q: Index in y
587  r: Index in z
588 
589 Returns:
590  1D Index
591 )";
592 
593 const std::string space_intersection = R"(
594 Get the intersection of two Sobolev spaces.
595 
596 Args:
597  space1: First space
598  space2: Second space
599 
600 Returns:
601  Intersection of the spaces
602 )";
603 
604 const std::string superset = R"(
605 Get the polyset types that is a superset of two types on the given
606 cell
607 
608 Args:
609  cell: The cell type
610  type1: The first polyset type
611  type2: The second polyset type
612 
613 Returns::
614  The superset type
615 )";
616 
617 const std::string restriction = R"(
618 Get the polyset type that represents the restrictions of a type on a
619 subentity
620 
621 Args:
622  ptype: The polyset type
623  cell: The cell type
624  restriction_cell: The cell type of the subentity
625 
626 Returns::
627  The restricted polyset type
628 )";
629 
630 } // namespace basix::docstring
FiniteElement< T > create_custom_element(cell::type cell_type, const std::vector< std::size_t > &value_shape, impl::mdspan_t< const T, 2 > wcoeffs, const std::array< std::vector< impl::mdspan_t< const T, 2 >>, 4 > &x, const std::array< std::vector< impl::mdspan_t< const T, 4 >>, 4 > &M, int interpolation_nderivs, maps::type map_type, sobolev::space sobolev_space, bool discontinuous, int highest_complete_degree, int highest_degree, polyset::type poly_type)
Definition: finite-element.cpp:418
std::pair< std::vector< T >, std::array< std::size_t, 2 > > compute_interpolation_operator(const FiniteElement< T > &element_from, const FiniteElement< T > &element_to)
Compute a matrix that represents the interpolation between two elements.
Definition: interpolation.cpp:21