Note: this is documentation for an old release. View the latest documentation at docs.fenicsproject.org/basix/v0.9.0/cpp/precompute_8h_source.html

Basix 0.6.0

Home     Installation     Demos     C++ docs     Python docs

precompute.h
1 // Copyright (c) 2020 Matthew Scroggs
2 // FEniCS Project
3 // SPDX-License-Identifier: MIT
4 
5 #pragma once
6 
7 #include "mdspan.hpp"
8 #include <span>
9 #include <tuple>
10 #include <vector>
11 
14 {
15 
63 void prepare_permutation(const std::span<std::size_t>& perm);
64 
116 template <typename E>
117 void apply_permutation(const std::span<const std::size_t>& perm,
118  const std::span<E>& data, std::size_t offset = 0,
119  std::size_t block_size = 1)
120 {
121  for (std::size_t b = 0; b < block_size; ++b)
122  {
123  for (std::size_t i = 0; i < perm.size(); ++i)
124  {
125  std::swap(data[block_size * (offset + i) + b],
126  data[block_size * (offset + perm[i]) + b]);
127  }
128  }
129 }
130 
137 template <typename E>
138 void apply_permutation_to_transpose(const std::span<const std::size_t>& perm,
139  const std::span<E>& data,
140  std::size_t offset = 0,
141  std::size_t block_size = 1)
142 {
143  const std::size_t dim = perm.size();
144  const std::size_t data_size
145  = (data.size() + (dim < block_size ? block_size - dim : 0)) / block_size;
146  for (std::size_t b = 0; b < block_size; ++b)
147  {
148  for (std::size_t i = 0; i < dim; ++i)
149  {
150  std::swap(data[data_size * b + offset + i],
151  data[data_size * b + offset + perm[i]]);
152  }
153  }
154 }
155 
170 std::vector<std::size_t>
171 prepare_matrix(std::pair<std::vector<double>, std::array<std::size_t, 2>>& A);
172 
206 template <typename T, typename E>
207 void apply_matrix(const std::span<const std::size_t>& v_size_t,
208  const std::experimental::mdspan<
209  const T, std::experimental::dextents<std::size_t, 2>>& M,
210  const std::span<E>& data, std::size_t offset = 0,
211  std::size_t block_size = 1)
212 {
213  const std::size_t dim = v_size_t.size();
214  apply_permutation(v_size_t, data, offset, block_size);
215  for (std::size_t b = 0; b < block_size; ++b)
216  {
217  for (std::size_t i = 0; i < dim; ++i)
218  {
219  for (std::size_t j = i + 1; j < dim; ++j)
220  {
221  data[block_size * (offset + i) + b]
222  += M(i, j) * data[block_size * (offset + j) + b];
223  }
224  }
225  for (std::size_t i = 1; i <= dim; ++i)
226  {
227  data[block_size * (offset + dim - i) + b] *= M(dim - i, dim - i);
228  for (std::size_t j = 0; j < dim - i; ++j)
229  {
230  data[block_size * (offset + dim - i) + b]
231  += M(dim - i, j) * data[block_size * (offset + j) + b];
232  }
233  }
234  }
235 }
236 
243 template <typename T, typename E>
245  const std::span<const std::size_t>& v_size_t,
246  const std::experimental::mdspan<
247  const T, std::experimental::dextents<std::size_t, 2>>& M,
248  const std::span<E>& data, std::size_t offset = 0,
249  std::size_t block_size = 1)
250 {
251  const std::size_t dim = v_size_t.size();
252  const std::size_t data_size
253  = (data.size() + (dim < block_size ? block_size - dim : 0)) / block_size;
254  apply_permutation_to_transpose(v_size_t, data, offset, block_size);
255  for (std::size_t b = 0; b < block_size; ++b)
256  {
257  for (std::size_t i = 0; i < dim; ++i)
258  {
259  for (std::size_t j = i + 1; j < dim; ++j)
260  {
261  data[data_size * b + offset + i]
262  += M(i, j) * data[data_size * b + offset + j];
263  }
264  }
265  for (std::size_t i = 1; i <= dim; ++i)
266  {
267  data[data_size * b + offset + dim - i] *= M(dim - i, dim - i);
268  for (std::size_t j = 0; j < dim - i; ++j)
269  {
270  data[data_size * b + offset + dim - i]
271  += M(dim - i, j) * data[data_size * b + offset + j];
272  }
273  }
274  }
275 }
276 
277 } // namespace basix::precompute
Matrix and permutation precomputation.
Definition: precompute.h:14
void apply_matrix_to_transpose(const std::span< const std::size_t > &v_size_t, const std::experimental::mdspan< const T, std::experimental::dextents< std::size_t, 2 >> &M, const std::span< E > &data, std::size_t offset=0, std::size_t block_size=1)
Apply a (precomputed) matrix to some transposed data.
Definition: precompute.h:244
void apply_permutation(const std::span< const std::size_t > &perm, const std::span< E > &data, std::size_t offset=0, std::size_t block_size=1)
Definition: precompute.h:117
std::vector< std::size_t > prepare_matrix(std::pair< std::vector< double >, std::array< std::size_t, 2 >> &A)
Definition: precompute.cpp:26
void apply_permutation_to_transpose(const std::span< const std::size_t > &perm, const std::span< E > &data, std::size_t offset=0, std::size_t block_size=1)
Definition: precompute.h:138
void prepare_permutation(const std::span< std::size_t > &perm)
Definition: precompute.cpp:17
void apply_matrix(const std::span< const std::size_t > &v_size_t, const std::experimental::mdspan< const T, std::experimental::dextents< std::size_t, 2 >> &M, const std::span< E > &data, std::size_t offset=0, std::size_t block_size=1)
Apply a (precomputed) matrix.
Definition: precompute.h:207