Note: this is documentation for an old release. View the latest documentation at docs.fenicsproject.org/basix/v0.9.0/cpp/math_8h_source.html

Basix 0.5.0

Home     Installation     Demos     C++ docs     Python docs

math.h
1 // Copyright (C) 2021 Igor Baratta
2 //
3 // This file is part of DOLFINx (https://www.fenicsproject.org)
4 //
5 // SPDX-License-Identifier: LGPL-3.0-or-later
6 
7 #pragma once
8 
9 #include "mdspan.hpp"
10 #include <array>
11 #include <span>
12 #include <vector>
13 
18 namespace basix::math
19 {
20 
21 namespace impl
22 {
27 void dot_blas(const std::span<const double>& A,
28  std::array<std::size_t, 2> Ashape,
29  const std::span<const double>& B,
30  std::array<std::size_t, 2> Bshape, const std::span<double>& C);
31 } // namespace impl
32 
37 template <typename U, typename V>
38 std::pair<std::vector<typename U::value_type>, std::array<std::size_t, 2>>
39 outer(const U& u, const V& v)
40 {
41  std::vector<typename U::value_type> result(u.size() * v.size());
42  for (std::size_t i = 0; i < u.size(); ++i)
43  for (std::size_t j = 0; j < v.size(); ++j)
44  result[i * v.size() + j] = u[i] * v[j];
45 
46  return {std::move(result), {u.size(), v.size()}};
47 }
48 
53 template <typename U, typename V>
54 std::array<typename U::value_type, 3> cross(const U& u, const V& v)
55 {
56  assert(u.size() == 3);
57  assert(v.size() == 3);
58  return {u[1] * v[2] - u[2] * v[1], u[2] * v[0] - u[0] * v[2],
59  u[0] * v[1] - u[1] * v[0]};
60 }
61 
68 std::pair<std::vector<double>, std::vector<double>>
69 eigh(const std::span<const double>& A, std::size_t n);
70 
75 std::vector<double>
76 solve(const std::experimental::mdspan<
77  const double, std::experimental::dextents<std::size_t, 2>>& A,
78  const std::experimental::mdspan<
79  const double, std::experimental::dextents<std::size_t, 2>>& B);
80 
84 bool is_singular(const std::experimental::mdspan<
85  const double, std::experimental::dextents<std::size_t, 2>>& A);
86 
91 std::vector<std::size_t>
92 transpose_lu(std::pair<std::vector<double>, std::array<std::size_t, 2>>& A);
93 
99 template <typename U, typename V, typename W>
100 void dot(const U& A, const V& B, W&& C)
101 {
102  assert(A.extent(1) == B.extent(0));
103  assert(C.extent(0) == C.extent(0));
104  assert(C.extent(1) == B.extent(1));
105  if (A.extent(0) * B.extent(1) * A.extent(1) < 4096)
106  {
107  std::fill_n(C.data_handle(), C.extent(0) * C.extent(1), 0);
108  for (std::size_t i = 0; i < A.extent(0); ++i)
109  for (std::size_t j = 0; j < B.extent(1); ++j)
110  for (std::size_t k = 0; k < A.extent(1); ++k)
111  C(i, j) += A(i, k) * B(k, j);
112  }
113  else
114  {
115  impl::dot_blas(
116  std::span(A.data_handle(), A.size()), {A.extent(0), A.extent(1)},
117  std::span(B.data_handle(), B.size()), {B.extent(0), B.extent(1)},
118  std::span(C.data_handle(), C.size()));
119  }
120 }
121 
125 std::vector<double> eye(std::size_t n);
126 
127 } // namespace basix::math
basix::math::is_singular
bool is_singular(const std::experimental::mdspan< const double, std::experimental::dextents< std::size_t, 2 >> &A)
Definition: math.cpp:130
basix::math::solve
std::vector< double > solve(const std::experimental::mdspan< const double, std::experimental::dextents< std::size_t, 2 >> &A, const std::experimental::mdspan< const double, std::experimental::dextents< std::size_t, 2 >> &B)
Definition: math.cpp:92
basix::math::eigh
std::pair< std::vector< double >, std::vector< double > > eigh(const std::span< const double > &A, std::size_t n)
Definition: math.cpp:55
basix::math
Definition: math.h:18
basix::math::cross
std::array< typename U::value_type, 3 > cross(const U &u, const V &v)
Definition: math.h:54
basix::math::eye
std::vector< double > eye(std::size_t n)
Definition: math.cpp:186
basix::math::dot
void dot(const U &A, const V &B, W &&C)
Definition: math.h:100
basix::math::transpose_lu
std::vector< std::size_t > transpose_lu(std::pair< std::vector< double >, std::array< std::size_t, 2 >> &A)
Definition: math.cpp:162
basix::math::outer
std::pair< std::vector< typename U::value_type >, std::array< std::size_t, 2 > > outer(const U &u, const V &v)
Compute the outer product of vectors u and v.
Definition: math.h:39