Defining conforming Crouzeix–Raviart elements¶

In this demo, we show how Basix’s custom element functionality can be used to create a conforming Crouzeix–Raviart element.

First, we import Basix and Numpy.

import basix
import numpy as np
from basix import CellType, MapType, PolynomialType, LatticeType

from mpl_toolkits import mplot3d  # noqa: F401
import matplotlib.pyplot as plt


Conforming CR element on a triangle¶

We begin by implementing this element on a triangle. The following function implements this element for an arbitrary degree. Details of the definition of this element can be found at https://defelement.com/elements/conforming-crouzeix-raviart.html.

For degrees 1 and 2, this element is equal to a degree 1 Lagrange element. For higher degrees, we define the element. Note that in Basix, an element’s degree is necessarily equal to the highest degree polynomial in the space is spans, so the degree we use here is one higher than that shown on DefElement.

def create_ccr_triangle(degree):

if degree in [1, 2]:
wcoeffs = np.eye(3)

x = [[], [], [], []]
x[0].append(np.array([[0.0, 0.0]]))
x[0].append(np.array([[1.0, 0.0]]))
x[0].append(np.array([[0.0, 1.0]]))

for _ in range(3):
x[1].append(np.zeros((0, 2)))
x[2].append(np.zeros((0, 2)))

M = [[], [], [], []]
for _ in range(3):
M[0].append(np.array([[[1.]]]))

for _ in range(3):
M[1].append(np.zeros((0, 1, 0)))
M[2].append(np.zeros((0, 1, 0)))

return basix.create_custom_element(
CellType.triangle, 1, [], wcoeffs, x, M, MapType.identity, False, 1)

npoly = (degree + 1) * (degree + 2) // 2
ndofs = (degree - 1) * (degree + 4) // 2
wcoeffs = np.zeros((ndofs, npoly))

dof_n = 0
for i in range(degree * (degree + 1) // 2):
wcoeffs[dof_n, dof_n] = 1
dof_n += 1

pts, wts = basix.make_quadrature(CellType.triangle, 2 * degree)
poly = basix.tabulate_polynomials(PolynomialType.legendre, CellType.triangle, degree, pts)
for i in range(1, degree - 1):
x = pts[:, 0]
y = pts[:, 1]
f = x ** i * y ** (degree - 1 - i) * (x + y)

for j in range(npoly):
wcoeffs[dof_n, j] = sum(f * poly[:, j] * wts)
dof_n += 1

geometry = basix.geometry(CellType.triangle)
topology = basix.topology(CellType.triangle)
x = [[], [], [], []]
M = [[], [], [], []]
for v in topology[0]:
x[0].append(np.array(geometry[v]))
M[0].append(np.array([[[1.]]]))
pts = basix.create_lattice(CellType.interval, degree - 1, LatticeType.equispaced, False)
mat = np.zeros((len(pts), 1, len(pts)))
mat[:, 0, :] = np.eye(len(pts))
for e in topology[1]:
edge_pts = []
v0 = geometry[e[0]]
v1 = geometry[e[1]]
for p in pts:
edge_pts.append(v0 + p * (v1 - v0))
x[1].append(np.array(edge_pts))
M[1].append(mat)
pts = basix.create_lattice(CellType.triangle, degree, LatticeType.equispaced, False)
x[2].append(pts)
mat = np.zeros((len(pts), 1, len(pts)))
mat[:, 0, :] = np.eye(len(pts))
M[2].append(mat)

return basix.create_custom_element(
CellType.triangle, degree, [], wcoeffs, x, M, MapType.identity, False, degree - 1)


We can then create a degree 3 conforming CR element.

e = create_ccr_triangle(3)


We now visualise the basis functions of the element we have created.

pts = basix.create_lattice(CellType.triangle, 30, LatticeType.equispaced, True)

x = pts[:, 0]
y = pts[:, 1]
z = e.tabulate(0, pts)[0]

fig = plt.figure(figsize=(8, 8))

for n in range(7):
if n == 6:
ax = plt.subplot(3, 3, n + 2, projection='3d')
else:
ax = plt.subplot(3, 3, n + 1, projection='3d')
ax.plot([0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 0], "k-")
ax.scatter(x, y, z[:, n, 0])

plt.savefig("ccr_triangle_3.png")


We also visualise the basis functions of a degree 4 conforming CR element.

e = create_ccr_triangle(4)

pts = basix.create_lattice(CellType.triangle, 30, LatticeType.equispaced, True)

x = pts[:, 0]
y = pts[:, 1]
z = e.tabulate(0, pts)[0]

fig = plt.figure(figsize=(11, 8))

for n in range(12):
ax = plt.subplot(3, 4, n + 1, projection='3d')
ax.plot([0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 0], "k-")
ax.scatter(x, y, z[:, n, 0])

plt.savefig("ccr_triangle_4.png")